Question

State the order and degree of the following differential equations, identify their type and hence solve them.

- (i) $\frac{dy}{dx} = x^2y$, where y = 1 when x = 1;
- (ii) $\frac{dy}{dx} 3x^2y = e^{x^3}\cos x$, where y = 1 when x = 0.

Answer

(i) $\frac{dy}{dx} = x^2y$: 1st order, 1st degree, variables separable $\Rightarrow \int \frac{dy}{dx} = \int x^2 dx$ $\Rightarrow \ln y = \frac{x^3}{3} + c$ But y = 1 when x = 1 \Rightarrow

$$\ln 1 = \frac{1}{3} + c$$

$$0 = \frac{1}{3} + c$$

$$c = -\frac{1}{3}$$

$$\Rightarrow \ln y = \frac{x^3}{3} - \frac{1}{3}$$
or $y = e^{\frac{1}{3}(x^3 - 1)}$

$$e^{-\frac{1}{3}} = 0.7165$$

(ii)
$$\frac{dy}{dx} - 3x^2y = e^{x^3}\cos x$$
: 1st order, 1st degree.

Linear, requiring integrating factor (or exact)

Integrating factor =
$$e^{\int -3x^2 dx} = e^{-x^3}$$

Multiply through by it: $e^{-x^3} \frac{dy}{dx} - 3x^2 e^{-x^2} y = e^{-x^3} e^{x^3} \cos x$

$$\Rightarrow \frac{d}{dx} \left\{ ye^{-x^3} \right\} = \cos x$$

$$\Rightarrow e^{-x^3}y = \int \cos x \, dx + c$$

$$\Rightarrow y = e^{x^3} [\sin x + c]$$

$$y = 1$$
 when $x = 0$

so
$$1 = e^0 [\sin 0 + c]$$

$$\Rightarrow c = 1$$

Therefore
$$y = e^{x^3} (\sin x + 1)$$