Question

The lines $\frac{x}{a}-\frac{y}{b}=0 \frac{x}{a}+\frac{y}{b}=0$ are the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=$

1. If the asymptotes are at right angles the hyperbola is called a rectangular hyperbola. Find a condition on a, b for this to be so. Find the eccentricity of a rectangular. Find the equation of a rectangular hyperbola referred to its asmptotes as axes.

Answer

$\frac{x}{a}-\frac{y}{b}=0-$ slope $\frac{b}{a}$
$\frac{x}{a}+\frac{y}{b}=0-$ slope $-\frac{b}{a}$
So they are orthogonal iff $\frac{b^{2}}{a^{2}}=1 \quad$ i.e. $b= \pm a$
So the two lines become $x=y x=-y$ and the hyperbola becomes $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}}=$ 1
So $a^{2}\left(1-e^{2}\right)=a^{2} \quad 1-e^{2}=-1 \quad e=\sqrt{2}$
The X-Y axis are obtained by rotation of 45°

$$
\begin{aligned}
x & =X \frac{1}{\sqrt{2}}-Y \frac{1}{\sqrt{2}} \\
y & =X \frac{1}{\sqrt{2}}+Y \frac{1}{\sqrt{2}} \\
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}} & =\frac{1}{2 a^{2}}\left((X-Y)^{2}-(Y+X)^{2}\right)=1 \\
\text { So } X Y & =-\frac{a^{2}}{2}
\end{aligned}
$$

