Question

If c is a fixed positive constant, then

$$
\frac{x^{2}}{\lambda^{2}}+\frac{y^{2}}{\lambda^{2}-c^{2}}=1 \quad c^{2}<\lambda^{2}
$$

defines a family of ellipses, any member of which is characterised by a particular value of λ. Show that every member of the family

$$
\frac{x^{2}}{\mu^{2}}-\frac{y^{2}}{c^{2}-\mu^{2}}=1 \quad \mu^{2}<c^{2}
$$

intersects any member of the first family at right angles.

Answer
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ gives $\frac{d y}{d x}=-\frac{x}{y} \cdot \frac{b^{2}}{a^{2}}$
$\frac{x^{2}}{c^{2}}-\frac{y^{2}}{d^{2}}=1$ gives $\frac{d y}{d x}=\frac{x}{y} \cdot \frac{d^{2}}{c^{2}}$
So the product of slopes where a curve of each system intersects is

$$
-\frac{x^{2}}{y^{2}} \cdot \frac{\lambda^{2}-c^{2}}{\lambda^{2}} \cdot \frac{c^{2}-\mu^{2}}{\mu^{2}}
$$

where they intersect

$$
-\frac{x^{2}}{\lambda^{2}}+\frac{y^{2}}{\lambda^{2}-c^{2}}=1=\frac{x^{2}}{\mu^{2}}-\frac{y^{2}}{c^{2}-m u^{2}}
$$

So $\frac{x^{2}}{y^{2}} \frac{\left(\lambda^{2}-c^{2}\right)\left(c^{2}-\mu^{2}\right)}{\lambda^{2} \mu^{2}}=1$
Thus the systems of curves are mutually orthogonal.
The foci are all at $(\pm c, 0)$

