Question

Verify that the equation

$$r = \frac{a}{\sin^2 \frac{1}{2}\theta}$$

is the polar equation of a parabola. Prove that $\phi = \pi - \frac{1}{2}\theta$ and use this to deduce the parabolic mirror property.

Answer $r = \frac{a}{\sin^2 \frac{1}{2}\theta} = 2a1 - \cos \theta$ So $\frac{2a}{r} = 1 - \cos \theta$. This is the standard equation of a conic with eccentricity 1. i.e. a parabola

$$\cot \phi = \frac{1}{r} \frac{dr}{d\theta}$$
$$= \frac{1}{r} a \left(-2 \left(\sin \frac{1}{2} \theta \right)^{-3} \right) \frac{1}{2} \cos \frac{1}{2} \theta$$
$$= -\cot \frac{1}{2} \theta$$
So $\phi = \pi - \frac{1}{2} \theta$

