Question

Verify that the equation

$$
r=\frac{a}{\sin ^{2} \frac{1}{2} \theta}
$$

is the polar equation of a parabola. Prove that $\phi=\pi-\frac{1}{2} \theta$ and use this to deduce the parabolic mirror property.

Answer

$r=\frac{a}{\sin ^{2} \frac{1}{2} \theta}=2 a 1-\cos \theta$
So $\frac{2 a}{r}=1-\cos \theta$. This is the standard equation of a conic with eccentricity

1. i.e. a parabola

$$
\begin{aligned}
\cot \phi & =\frac{1}{r} \frac{d r}{d \theta} \\
& =\frac{1}{r} a\left(-2\left(\sin \frac{1}{2} \theta\right)^{-3}\right) \frac{1}{2} \cos \frac{1}{2} \theta \\
& =-\cot \frac{1}{2} \theta \\
\text { So } \phi & =\pi-\frac{1}{2} \theta
\end{aligned}
$$

