Question

Find the co-ordinates of the point of intersection of the tangents at the points with parameters t_{1}, t_{2} of the parabola $x=k t^{2}, y=2 k t$. Prove that the tangents intersect at right angles if and only they intersect on the directrix.

Answer

$x=k t^{2} \quad y=2 k t \quad \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 k}{2 k t}=\frac{1}{t}$
So the equation of the tangent is

$$
\begin{aligned}
y-2 k t & =\frac{1}{t}\left(x-k t^{2}\right) \\
y t & =x+k t^{2}
\end{aligned}
$$

So $y t_{1}=x+k t^{2}$ and $y t_{2}=x k t_{2}^{2}$ intersect where $y\left(t_{1}-t_{2}\right)=k\left(t_{1}^{2}-t_{2}^{2}\right)$
i.e. where $y=k(t 1+t 2)$

So $x=k t_{1}\left(t_{1}+t_{2}\right)-k t_{1}^{2}=k t_{1} t_{2}$
The directrix has equation $x=-k$
So the intersection lies on the directirx if and only if $t_{1} t_{2}=-1$ i.e. $\frac{1}{t_{1}} \cdot \frac{1}{t_{2}}=-1$ i.e. if the tangents intersect orthogonally

