Question

Let P be a point in a parabola with focus S . Let the tangent at P meet the directrix at N . Let M be the foot of the perpendicular from P to the directrix. Show that the angle $P S N$ is a right angle, and use this to deduce the parabolic mirror property

Answer

The equation of the tangent to $x=k t^{2} y=2 k t$ is $y t=x+k t^{2}$
This meets the directrix where $x=-k$ so $y=\frac{k}{t}\left(t^{2}-1\right)$
$S=(k, 0)$ so the gradient of SP is $\frac{2 k t}{k t^{2}-k}=\frac{2 t}{t^{2}-1}$
The gradient of NS is $\frac{\frac{k}{t}\left(t^{2}-1\right)}{-k-k}=-\frac{t^{2}-1}{2 t}$
The product of the gradients is -1 so $N \hat{S} P=90^{\circ}$
Now $M P=P S$ by definition of a parabola so the triangles $M P S$ and $S P N$ are congruent (RHS)
Hence the parabolic mirror property is in diagram.

