Question

Find a condition on l, m, n to ensure that the line $l x+m y+n=0$ is tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Answer

The equation of the tangent at $\left(x_{0}, y_{0}\right)$ is

$$
\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}=1
$$

This is the same as the line $-\frac{l}{n} x-\frac{m}{n} y=1$ if and only if

$$
\begin{aligned}
& \frac{x_{0}}{a^{2}}=-\frac{l}{n} \quad \frac{y_{0}}{b^{3} 2}=-\frac{m}{n} \\
& \text { i.e. } x_{0}=-\frac{l}{a^{2}} n \quad y_{0}=-\frac{m b^{2}}{n}
\end{aligned}
$$

But $\left(x_{0}, y_{0}\right)$ lies on the ellipise, so

$$
1=\frac{x_{0}^{2}}{a^{2}}+\frac{y_{0}^{2}}{b^{2}}=\frac{l^{2} a^{4}}{n^{2} a^{2}}+\frac{m^{2} b^{2}}{n^{2} b^{2}} \text { i.e. } l^{2} a^{2}+m^{2} b^{2}=n^{2}
$$

