Question

- (i) The following equations are written in terms of cylinderical co-ordinates. What curves or surfaces do they represent?
 - (a) $\phi = \frac{\pi}{4}, z = 2$

(b)
$$R^2 + z^2 = 9$$

- (c) $R = z \tan \alpha$ where α is a constant
- (d) $R\sin\phi = 1, z = 0$
- (ii) The following equations are written in terms of spherical co-ordinates. What curves do they represent?

(a)
$$r \cos \theta = 1$$

(b) $\sin \theta = \frac{\pi}{4}$
(c) $\theta = \frac{\pi}{2}, r = \cos \phi = 0$
(d) $\theta = \frac{\pi}{4}, r = \cos \theta = 1$

Answer

(b) $R^2 + z^2 = 9 \Rightarrow x^2 + y^2 + z^2 = 1$ gives a sphere.

(c) $R = z \tan \alpha$ where α is a constant

Gives a half cone

(d)
$$R\sin\phi = 1, \quad z = 0$$

 $y = 1, \quad z = 0$ gives a line

(a) $r \cos \theta = 1 \Rightarrow z = 1$ gives a plane

(b) $\sin \theta = \frac{\pi}{4} \Rightarrow \theta = \text{constant.}$ Gives a double cone.

(c)
$$\theta = \frac{\pi}{2}$$
, $r = \cos \phi = 0$ Gives the y axis.

(d)
$$\theta = \frac{\pi}{4}, r = \cos \theta = 1$$

circle centre is at (0, 0, 1) and the radius is 1 in the plane z = 1