Question

(i) The following equations are written in terms of cylinderical co-ordinates. What curves or surfaces do they represent?
(a) $\phi=\frac{\pi}{4}, z=2$
(b) $R^{2}+z^{2}=9$
(c) $R=z \tan \alpha$ where α is a constant
(d) $R \sin \phi=1, z=0$
(ii) The following equations are written in terms of spherical co-ordinates. What curves do they represent?
(a) $r \cos \theta=1$
(b) $\sin \theta=\frac{\pi}{4}$
(c) $\theta=\frac{\pi}{2}, r=\cos \phi=0$
(d) $\theta=\frac{\pi}{4}, r=\cos \theta=1$

Answer

(i) (a) $\phi=\frac{\pi}{4}, z=2$

(b) $R^{2}+z^{2}=9 \Rightarrow x^{2}+y^{2}+z^{2}=1$ gives a sphere.
(c) $R=z \tan \alpha$ where α is a constant

Gives a half cone
(d) $\begin{array}{rl}R \sin \phi=1, & z=0 \\ y=1 & z=0\end{array}$ gives a line.
(ii)
(a) $r \cos \theta=1 \Rightarrow z=1$ gives a plane
(b) $\sin \theta=\frac{\pi}{4} \Rightarrow \theta=$ constant. Gives a double cone.
(c) $\theta=\frac{\pi}{2}, r=\cos \phi=0$ Gives the y axis.
(d) $\theta=\frac{\pi}{4}, r=\cos \theta=1$

circle centre is at $(0,0,1)$ and the radius is 1 in the plane $z=1$

