Question

An ellipsoid is generated by by rotating an ellipse about its major axis. The inside surface of the ellipsoid id silvered to produce a mirror. Show that a ray of light emanating from one focus will be reflected to the other focus.

Answer Either

The equation to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at (x_0, y_0) is

$$\frac{x_0}{a^2} + \frac{yy_0}{b^2} = 1$$

so y = 0 gives $x = \frac{a^2}{x_0}$ which is the x coordinate of T. So $ST = \frac{a^2}{x_0} - ae$ $S'T = \frac{a^2}{x_0} + ae$ The distance of P from the directrix l_1 is $\frac{a}{e} - x_0$ So $SP = e\left(\frac{a}{e} - x_0\right) = a - ex_0$. $s'P = a + ex_0$ So $\frac{ST}{s'T} = \frac{SP}{S'P}$

Thus PT is an external bisector of SPS' hence by the angles bisector theorem (converse) the angles are equal as marked. Hence the reflection property.

or

Let P be any point on the ellipse with coordinates (x_0, y_0)

The gradient of PT is $-\frac{b^2 x_0}{a^2 y_0} = m_1$ The gradient of S'P is $\frac{y_0}{x_0 + ae} = m'_2$ The gradient of SP is $\frac{y_0}{x_0 - ae} = m_2$

$$\tan K \hat{P}T = \frac{m_1 - m'_2}{1 + m_1 m'_2}$$

$$= \frac{\frac{y_0}{x_0 + ae} + \frac{b^2 x_0}{a^2 y_0}}{1 - \frac{y_0}{x_0 + ae} \cdot \frac{b^2}{a^2 y_0}}$$

$$= \frac{a_2 y_0^2 + b^2 x_0^2 + b^2 ae x_0}{(a^2 - b^2) x_0 y_0 + a^3 y_0 e}$$

$$= \frac{a^2 b^2 + b^2 ae x_0}{a^3 y_0 e + a^2 e^2 x_0 y_0}$$

$$= \frac{b^2}{ae y_0}$$

To obtain $\frac{m_1 - m_2}{1 + m_1 m_2}$ replace a by -a in above, so that $\tan H\hat{P}T = -\frac{b}{ay_o e}$ So $K\hat{P}T = \pi - H\hat{P}T$ Therefore $L\hat{P}S' = S\hat{P}T$ QED