Question

An ellipsoid is generated by by rotating an ellipse about its major axis. The inside surface of the ellipsoid id silvered to produce a mirror. Show that a ray of light emanating from one focus will be reflected to the other focus.

Answer

Either

The equation to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $\left(x_{0}, y_{0}\right)$ i s

$$
\frac{x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}=1
$$

so $y=0$ gives $x=\frac{a^{2}}{x_{0}}$ which is the x coordinate of T .
So $S T=\frac{a^{2}}{x_{0}}-a e \quad S^{\prime} T=\frac{a^{2}}{x_{0}}+a e$
The distance of P from the directrix l_{1} is $\frac{a}{e}-x_{0}$
So $S P=e\left(\frac{a}{e}-x_{0}\right)=a-e x_{0} . \quad s^{\prime} P=a+e x_{0}$
So $\frac{S T}{s^{\prime} T}=\frac{S P}{S^{\prime} P}$
Thus $P T$ is an external bisector of $S P S^{\prime}$ hence by the angles bisector theorem (converse) the angles are equal as marked.
Hence the reflection property.
or

Let P be any point on the ellipse with coordinates $\left(x_{0}, y_{0}\right)$

The gradient of PT is $-\frac{b^{2} x_{0}}{a^{2} y_{0}}=m_{1}$
The gradient of $\mathrm{S}^{\prime} \mathrm{P}$ is $\frac{y_{0}}{x_{0}+a e}=m_{2}^{\prime}$
The gradient of SP is $\frac{y_{0}}{x_{0}-a e}=m_{2}$

$$
\begin{aligned}
\tan K \hat{P} T & =\frac{m_{1}-m_{2}^{\prime}}{1+m_{1} m_{2}^{\prime}} \\
& =\frac{\frac{y_{0}}{x_{0}+a e}+\frac{b^{2} x_{0}}{a^{2} y_{0}}}{1-\frac{y_{0}}{x_{0}+a e} \cdot \frac{b^{2}}{a^{2} y_{0}}} \\
& =\frac{a_{2} y_{0}^{2}+b^{2} x_{0}^{2}+b^{2} a e x_{0}}{\left(a^{2}-b^{2}\right) x_{0} y_{0}+a^{3} y_{0} e} \\
& =\frac{a^{2} b^{2}+b^{2} a e x_{0}}{a^{3} y_{0} e+a^{2} e^{2} x_{0} y_{0}} \\
& =\frac{b^{2}}{a e y_{0}}
\end{aligned}
$$

To obtain $\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$ replace a by $-a$ in above, so that $\tan H \hat{P} T=-\frac{b}{a y_{o} e}$ So $K \hat{P} T=\pi-H \hat{P} T$
Therefore $L \hat{P} S^{\prime}=S \hat{P} T$ QED

