QUESTION

Consider the points L = (1, 1, 1), M = (1, -1, 2) and N = (-1, 2, 3).

- (i) Write down the vectors $\mathbf{u} = LM$ and $\mathbf{v} = LN$ and find their lengths.
- (ii) Calculate the dot product $\mathbf{u}.\mathbf{v}$ and the angle θ between \mathbf{u} and \mathbf{v} .
- (iii) Compute the cross product $\mathbf{u} \times \mathbf{v}$ and use it to write down the vector equation of the plane Π_1 containing the three point L, M, n. What is the equation of the plane in terms of x, y, z coordinates?
- (iv) Write down the vector equation of the plane Π_2 parallel to Π_1 and passing through the origin. Find the distance between the planes Π_1 and Π_2 .

ANSWER

(i)
$$\mathbf{u} = (0, -2, 1), \ |\mathbf{u}| = \sqrt{5} \ \mathbf{v} = (-2, 1, 2), \ |\mathbf{v}| = 3$$

(ii)
$$\mathbf{u}.\mathbf{v} = 0$$
 so $\theta = \frac{\pi}{2}$

(iii)
$$\mathbf{u} \times \mathbf{v} = (-5, -2, -4)$$

 Π_1 has equation $(-5, -2, -4).(\mathbf{x} - (1, 1, 1)) = 0$ so $5x + 2y + 4z = 11$

(iv)
$$\Pi_2$$
 has equation v. $\begin{pmatrix} 5 \\ 2 \\ 4 \end{pmatrix} = 5x + 2y + 4z = 0$

Distance between the two planes $=|r(\mathbf{u}\times\mathbf{v})|$ where (-5r, -2r, -4r) lies on Π_1 so $r=\frac{-11}{45}$ hence $|r(\mathbf{u}\times\mathbf{v})|=\frac{11}{\sqrt{45}}$.