Partial Differentiation

Limits

Question

Explain how the function

$$
f(x, y)=\frac{x^{2}+y^{2}-x^{3} y^{3}}{x^{2}+y^{2}}, \quad(x, y) \neq(0,0)
$$

can be defined at $(0,0)$, so that it becomes continuous at all points of the $x y$-plane.
Answer

$$
f(x, y)=\frac{x^{2}+y^{2}-x^{3} y^{3}}{x^{2}+y^{2}}=1-\frac{x^{3} y^{3}}{x^{2}+y^{2}}
$$

But

$$
\left|\frac{x^{3} y^{3}}{x^{2}+y^{2}}\right|=\left|\frac{x^{2}}{x^{2}+y^{2}}\right|\left|x y^{3}\right| \leq\left|x y^{3}\right| \rightarrow 0
$$

as $(x, y) \rightarrow(0,0)$.

$$
\Rightarrow \lim _{(x, y) \rightarrow(0,0)} f(x, y)=1-0=1
$$

So define $f(0,0)=1$.

