Partial Differentiation

Limits

Question

Given a function $f(x, y)$ and a point in its domain (a, b). Assume that the single variable functions g and h are described as

$$
\begin{aligned}
& g(x)=f(x, b) \\
& h(y)=f(a, y)
\end{aligned}
$$

If g is continuous at $x=a$ and h is continuous at $y=b$, does this mean that f is continuous at (a, b) ?
Also, does continuity of f at (a, b) mean that g is continuous at a and that h is continuous at b. Justify your answers?
Answer
Let $f(x, y)=\left\{\begin{array}{lll}\frac{2 x y}{x^{2}+y^{2}} & \text { if } & (x, y) \neq(0,0) \\ 0 & \text { if } & (x, y)=(0,0)\end{array}\right.$
Let $a=b=0$. If $g(x)=f(x, 0)$ and $h(y)=f(0, y)$, then $g(x)=0 \forall x$, and $h(y)=0 \forall y$.
So g and h are continuous at 0 . However f is not continuous.
If $f(x, y)$ is continuous at (a, b), then $g(x)=f(x, b)$ is continuous at $x=a$ as

$$
\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a, y \rightarrow b} f(x, y)=f(a, b)
$$

Similarly, $h(y)=f(a, y)$ is continuous at $y=b$.

