Question
Derive the Cauchy-Riemann equations as necessary conditions for the func-
tion

f(z) = u(z,y) +iv(z,y), (z =z +1y)

to be differentiable as a function of a complex variable z. State sufficient
conditions involving the Cauchy-Riemann equations for f to be differentiable.
Hence find the points where the function
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is differentiable.
At the points at which f is differentiable calculate the derivative f’(z).

Answer
If f is differentiable at z = x + 7y,

w(z + h,y) +iv(x 4+ h,y) — u(x,y) — iv(z,y)
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Sufficient conditions for differentiability at z are that the Cauchy-Riemann

equations should be satisfied at z, and that the partial derivatives should

exist in a neighbourhood of (z,y) and be continuous at (z,y).
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For the Cauchy-Riemann equations to be satisfied we require
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From (2) 22y° = 2%y

soforxy #0  y* =2t ie y=dx

this also satisfies (1).

Now from (1) z=0=y=0andy=0=2=0

So if y = £x # 0 the Cauchy-Riemann equations are satisfied and the partial
derivatives are continuous if (x,y) # (0,0), so f is differentiable at z(1 + 7)
for x # 0.

Now consider z = 0. Let z= rgi‘). 49— 525 coxt Bein g
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