Question

i) Determine the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$.

Find one point on the circle of convergence where the series diverges, and two distinct points where the series converges.
ii) Express $\frac{z+1}{z-1}$ as a Taylor series centred at the origin. What is the largest region in which this series converges to the function?

Express the same function as a Laurent series in $|z|>1$.
iii) Find all the singular points of the function

$$
\frac{\left(z-\frac{\pi}{2}\right)}{\left(e^{z}-1\right)^{3} \cos z}
$$

and determine their natures.

Answer

i) Let $u_{n}=\frac{z^{n}}{n} \quad\left|\frac{u_{n+1}}{u_{n}}\right|=\frac{n}{n+1}|z| \rightarrow|z|$ as $n \rightarrow \infty$ therefore $R=1$.

The series diverges at $z=1$ since $\sum \frac{1}{n}$ diverges.
At $z=-1$ the series is $\sum \frac{(-1)^{n}}{n}$ which is convergent by the Leibniz test.
At $z=i$ the series is $\frac{i}{1}-\frac{1}{2}-\frac{i}{3}+\frac{1}{4}+\frac{i}{5}-\frac{1}{6}-\cdots$

$$
=-\frac{1}{2}+\frac{1}{4}-\frac{1}{6}+\cdots+i\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots\right)
$$

so both real and imaginary parts converge by the Leibniz test.
ii) $\frac{1}{z-1}=-\left(1+z+z^{2}+\cdots\right)$
so $\frac{z+1}{z-1}=-(1+z)\left(1+z+z^{2}+\cdots\right)=-\left(1+2 z+2 z^{2}+2 z^{3}+\cdots\right)$
which converges for $|z|<1$.

For $|z|>1, \quad \frac{z+1}{z-1}=\frac{z+1}{z\left(1-\frac{1}{2}\right)}$
$=\left(1+\frac{1}{z}\right)\left(1+\frac{1}{z}+\frac{1}{z^{2}}+\cdots\right)=1+\frac{2}{z}+\frac{2}{z^{2}}+\frac{2}{z^{3}}+\cdots$
iii) singularities occur at places where $e^{z}=1$ and $\cos z=0$
i.e. $z=2 n \pi i$ and $z=(2 n+1) \frac{\pi}{2}$

Now $\frac{z}{e^{z}-1}=\frac{1}{1+\frac{z}{2!}+\cdots} \rightarrow 1$ as $z \rightarrow 0$
So $z^{3} f(z) \rightarrow \frac{-\frac{\pi}{2}}{1.1} \neq 0$ as $z \rightarrow 0$
Thus $f(Z)$ has a pole of order 3 at $z=0$, and by periodicity of e^{z} at $z=2 n \pi i$.
Letting $p(z)=\frac{z-(2 n+1)^{\frac{\pi}{2}}}{\cos z}$
Use L'Hopital's rule
$p(z) \rightarrow \lim _{z \rightarrow(2 n+1) \frac{\pi}{2}} \frac{1}{\sin z} \neq 0$ as $z \rightarrow(2 n+1) \frac{\pi}{2}$
so $f(z)$ has a removable singularity at $z=\frac{\pi}{2}$, and simple poles at $z=(2 n+1) \frac{\pi}{2} \quad n \in \mathbf{Z} \quad n \neq 1$

