Question

i) Determine the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{z^n}{n}$.

Find one point on the circle of convergence where the series diverges, and two distinct points where the series converges.

- ii) Express $\frac{z+1}{z-1}$ as a Taylor series centred at the origin. What is the largest region in which this series converges to the function? Express the same function as a Laurent series in |z| > 1.
- iii) Find all the singular points of the function

$$\frac{\left(z - \frac{\pi}{2}\right)}{(e^z - 1)^3 \cos z}$$

and determine their natures.

Answer

i) Let
$$u_n = \frac{z^n}{n}$$
 $\left|\frac{u_{n+1}}{u_n}\right| = \frac{n}{n+1}|z| \to |z|$ as $n \to \infty$ therefore $R = 1$.
The series diverges at $z = 1$ since $\sum \frac{1}{n}$ diverges.
At $z = -1$ the series is $\sum \frac{(-1)^n}{n}$ which is convergent by the Leibniz test
At $z = i$ the series is $\frac{i}{1} - \frac{1}{2} - \frac{i}{3} + \frac{1}{4} + \frac{i}{5} - \frac{1}{6} - \cdots$
 $= -\frac{1}{2} + \frac{1}{4} - \frac{1}{6} + \cdots + i(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots)$
so both real and imaginary parts converge by the Leibniz test.

ii)
$$\frac{1}{z-1} = -(1+z+z^2+\cdots)$$

so $\frac{z+1}{z-1} = -(1+z)(1+z+z^2+\cdots) = -(1+2z+2z^2+2z^3+\cdots)$
which converges for $|z| < 1$

which converges for |z| < 1.

For
$$|z| > 1$$
, $\frac{z+1}{z-1} = \frac{z+1}{z\left(1-\frac{1}{2}\right)}$
= $\left(1+\frac{1}{z}\right)\left(1+\frac{1}{z}+\frac{1}{z^2}+\cdots\right) = 1+\frac{2}{z}+\frac{2}{z^2}+\frac{2}{z^3}+\cdots$

iii) singularities occur at places where $e^z = 1$ and $\cos z = 0$

i.e.
$$z = 2n\pi i$$
 and $z = (2n+1)\frac{\pi}{2}$
Now $\frac{z}{e^z - 1} = \frac{1}{1 + \frac{z}{2!} + \cdots} \to 1$ as $z \to 0$
So $z^3 f(z) \to \frac{-\frac{\pi}{2}}{1.1} \neq 0$ as $z \to 0$

Thus f(Z) has a pole of order 3 at z = 0, and by periodicity of e^z at $z = 2n\pi i$.

Letting
$$p(z) = \frac{z - (2n+1)^{\frac{\pi}{2}}}{\cos z}$$

Use L'Hopital's rule

$$p(z) \to \lim_{z \to (2n+1)\frac{\pi}{2}} \frac{1}{\sin z} \neq 0 \text{ as } z \to (2n+1)\frac{\pi}{2}$$

so f(z) has a removable singularity at $z = \frac{\pi}{2}$, and simple poles at $z = (2n+1)\frac{\pi}{2}$ $n \in \mathbb{Z}$ $n \neq 1$