Exam Question

Topic: Tangent Plane

Find an equation for the plane which is tangent to the surface whose equation is $z=\ln \left(x^{2}+y^{2}\right)$ at the point $(1,0,0)$.
This tangent plane meets the surface in many other points. Find all such points for which $x=2$.

Solution

$$
z=\ln \left(x^{2}+y^{2}\right) ; \quad \frac{\partial z}{\partial x}=\frac{2 x}{x^{2}+y^{2}} ; \quad \frac{\partial z}{\partial y}=\frac{2 y}{x^{2}+y^{2}} .
$$

So when $x=1$ and $y=0, \frac{\partial z}{\partial x}=2$ and $\frac{\partial z}{\partial y}=0$.
The equation of the tangent plane at $(1,0,0)$ is therefore $z=2(x-1)$.
This plane meets the surface where $2(x-1)=\ln \left(x^{2}+y^{2}\right)$, so if $x=2$ we have $2=\ln \left(4+y^{2}\right)$.
Thus $4+y^{2}=\mathrm{e}^{2}$ i.e., $y= \pm \sqrt{\mathrm{e}^{2}-4}$.
There are therefore two such points, namely $\left(2, \pm \sqrt{\mathrm{e}^{2}-4}, 2\right)$.

