Question

For $|z| \to \infty$ find the sectors in the complex plane where the following order estimates are satisfied for all positive n.

- (a) $z^n = o(e^z)$
- **(b)** $e^z = o(z^n)$
- (c) $z^n = o(e^{z^2})$

Answer

- (a) $z^n = o(e^z)$ as $|z| \to \infty \Rightarrow \lim_{|z| \to \infty} \left| \frac{z^n}{e^z} \right| = 0$, for all n > 0. This is true for Re(z) > 0, $(|e^z| \gg 1)$ $\Rightarrow z^n = o(e^z)$, $|z| \to \infty$, Re(z) > 0
- **(b)** $e^z = o(z^n) \Rightarrow \lim_{|z| \to \infty} \left| \frac{e^z}{z^n} \right| = 0 \text{ for all } n > 0$ When Re(z) < 0, $|e^z| \ll 1$. Therefore $e^z = o(z^n)$, $|z| \to \infty$, Re(z) < 0
- (c) $z^n = o(e^{z^2}) \Rightarrow \lim_{|z| \to \infty} \left| \frac{z^n}{e^{z^2}} \right| = 0$ for all n > 0Here $|e^{z^2}| > |z^n|$ for all $z \to \infty$. Therefore $z^n = o(e^{z^2}), \ z \to \infty$. except on the imaginary axis, when $|e^{z^2}| = 1$ $Re(z) \neq 0$.