Question

The waiting list for a particular operation at a hospital consists of j people. The consultant performs at most one operation a day and there is a probability $Q(>\frac{1}{2})$ that he will operate on a day. The probability of one new patient being added to the waiting list on a day is P, and the probability of no new patient being added is (1-P). A patient will not have an operation on the same day he is added to the waiting list. When there are a(>j) people on the waiting list the computer goes on strike and all new patients are directed to a different hospital. Show that the length of the waiting list can be described as a simple random walk with two barriers, stating any necessary assumptions. Find the probability that the length of the waiting list reaches a. If $Q = \frac{2}{3}$ and $P = \frac{1}{3}$ find the expected number of days until a strike occurs.

Answer

Let $X_n = \text{length of waiting list at day } n$

Let Z_n = change in waiting list on day n

Then
$$X_0 = j$$
 and $X_n = X_{n-1} + Z_n$ $n = 1, 2, 3, ...$

Assume that the decision to perform operation is independent of whether a new patient is added.

Then
$$Z_n = \begin{cases} 1 & \text{with probability } P(1-Q) = p \\ -1 & \text{with probability } (1-P)Q = q \\ 0 & \text{with probability } (1-P)(1-Q) + PQ = r \end{cases}$$
 provided $0 < X_{n+1} < a$

$$Z_n = 0$$
 with probability 1when $X_{n-1} = a$
 $Z_n = \begin{cases} 1 & \text{with probability } P \\ 0) & \text{with probability } 1 - P \end{cases}$ when $X_{n-1} = 0$

Assuming that activities on different days for both surgeon and patients are independent, the $Z'_n s$ are independent and (X_n) is a simple random walk with an absorbing barrier at a and a reflecting barrier at 0.

Let q_j = probability of absorption at a from a start at j

Then
$$q_j = pq_{j+1} + qq_{j-1} + rq_j$$
 $j = 1, 2, ..., a-1$
 $q_a = 1$
 $q_0 = Pq_1 + (1-P)q_0$ i.e. $q_1 = q_0$

The general solution of the difference equation is

$$q_j = A \left(\frac{q}{p}\right)^j$$
 $q \neq p$
 $q_j = A + Bj$ $q = p$

To find A and B

Case I:
$$p \neq q$$

$$q_a = 1 \text{ so } A \left(\frac{q}{p}\right)^a + B = 1$$

As
$$q_1 = q_0$$
 we get $A + B = A\left(\frac{q}{p}\right) + B \Rightarrow A = 0$ therefore $B = 1$

Case II:
$$p = q$$

$$q_a = 1$$
 so $A + Ba = 1$

As
$$q_1 = q_0$$
 we get $A = A + B \Rightarrow B = 0$ therefore $A = 1$

Hence $q_j = 1$ in both cases. Absorption is certain.

Now let E_j be the expected number of days until absorption.

$$E_j = p(1 + E_{j+1}) + q(1 + E_{j-1}) + r(1 + E_j)$$
 $j = 1, 2, ..., a - 1$

$$E_0 = 0$$

$$E_0 = P(1+E_1) + (1-P)(1+E_0)$$
 i.e. $1 = P(E_0 + E_1)$

The general solution of the difference equation is

$$E_j = A + B\left(\frac{q}{p}\right)^j - \frac{j}{p-q}$$
 for $p \neq q$

When $Q = \frac{2}{3}$ and $P = \frac{1}{3}$; then $p = \frac{1}{9}$ and $q = \frac{4}{9}$. Using these values and the boundary conditions, gives

$$B = -2 \quad \text{and} \quad A = 2 \cdot 4^a - 3a$$

So

$$E_j = 2(4^a - 4^j) + 3(j - a)$$