Question

The Bernoulli-Laplace model of diffusion describes the flow of two incompressible liquids between two containers. It may be described in terms of d white and d black balls distributed between two boxes so that each box contains d balls. At each independent trial one ball is drawn from each box at random and placed in the opposite box so that each box always contains d balls. Suppose X_{n} denotes the number of white balls in box 1 after the n-th trial. Show that $\left\{X_{n}\right\} \quad(n=1,2, \ldots)$ forms a Markov chain and find the 1-step transition probabilities. Show that the stationary distribution for this Markov chain is

$$
\pi_{k}=\binom{d}{k}^{2} \pi_{0}, \quad k=1,2, \ldots, d
$$

where

$$
\pi_{0}=\left[\sum_{k=0}^{d}\binom{d}{k}^{2}\right]^{-1}, \quad\binom{d}{k}=\frac{d!}{k!(d-k)!}
$$

Answer

X_{n} has possible states $0,1,2, \ldots, d$.
$P\left(X_{n+1}=k\right)$ depends only on the number of balls in each box box before the $(n+1)$-th trial i.e. by the value X_{n}, so we have a Markov chain.
Suppose $X_{n}=j$

Box 2

The possible outcomes from the next trial are:
(i) W from 1 and W from 2 with probability $\left(\frac{j}{d}\right) \cdot\left(\frac{d-j}{d}\right)$ giving $X_{n+1}=j$
(ii) W from 1 and B from 2 with probability $\left(\frac{j}{d}\right) \cdot\left(\frac{j}{d}\right)$ giving

$$
X_{n+1}=j-1
$$

(iii) B from 1 and W from 2 with probability $\left(\frac{d-j}{d}\right) \cdot\left(\frac{d-j}{d}\right)$ giving $X_{n+1}=j+1$
(iv) B from 1 and B from 2 with probability $\left(\frac{d-j}{d}\right) \cdot\left(\frac{j}{d}\right)$ giving $X_{n+1}=j$

So $p_{j j}=2 \cdot\left(\frac{d-j}{d}\right)\left(\frac{j}{d}\right)$
$p_{j, j+1}=\left(\frac{d-j}{d}\right)^{2}$
$p_{j, j-1}=\left(\frac{j}{d}\right)^{2}$
$p_{j, k}=0$ if $k \neq j-1, j, j+1$
With special cases: -
$j=0$: only (iii) is possible, with probability 1.
$j=d$: only (ii) is possible, with probability 1 .

$$
P=\frac{1}{d}\left(\begin{array}{ccccccc}
0 & d^{2} & 0 & 0 & \cdots & 0 & 0 \\
1 & 2(d-1) & (d-1)^{2} & 0 & \cdots & 0 & 0 \\
0 & 2^{2} & 2(d-2) \cdot 2 & (d-2)^{2} & & 0 & 0 \\
\vdots & \vdots & & & & & \vdots \\
0 & 0 & & & (d-1)^{2} & 2 \cdot(d-1) & 1 \\
0 & 0 & & & & d^{2} & 0
\end{array}\right)
$$

The stationary distribution $\pi=\left(\pi_{0}, \pi_{1}, \pi_{2}, \ldots, \pi_{d}\right)$ satisfies $\pi P=\pi$, so

$$
\pi_{0}=\frac{\pi_{1}}{d^{2}} \quad \pi_{d}=\frac{\pi_{d-1}}{d^{2}}
$$

and for $j \neq 0$ or d,
$\pi_{j}=\pi_{j-1}\left(\frac{d-j+1}{d}\right)^{2}+\pi_{j} 2\left(\frac{j}{d}\right)\left(\frac{d-j}{d}\right)+\pi_{j+1}\left(\frac{j+1}{d}\right)^{2}$
Now $\pi_{1}=d^{2} \pi_{0}=\binom{d}{1}^{2} \pi_{0}$
We proceed by induction

$$
\begin{aligned}
\pi_{j+1}= & \left(\frac{d}{j+1}\right)^{2}\left(\pi_{j}-\pi_{j-1}\left(\frac{d-j+1}{d}\right)^{2}-\pi_{j} 2\left(\frac{j}{d}\right)\left(\frac{d-j}{d}\right)\right) \\
= & \left(\frac{d}{j+1}\right)^{2}\left[\left(\frac{d!}{(d-j)!j!}\right)^{2}\right. \\
& \quad-\left(\frac{d!}{(d-j+1)!(j-1)!}\right)\left(\frac{d-j+1}{d}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left(\frac{d!}{(d-j)!j!}\right)^{2} \cdot 2\left(\frac{j}{d}\right)\left(\frac{d-j}{d}\right)\right] \pi_{0} \\
= & \left(\frac{d}{j+1}\right)^{2}\left[\left(\frac{d!}{(d-j)!j!}\right)^{2}-\frac{1}{d^{2}}\left(\frac{d!}{(d-j)!(j-1)!}\right)^{2}\right. \\
& \left.-\left(\frac{d!}{(d-j)!j!}\right)^{2} \cdot 2 \frac{j}{d} \frac{d-j}{d}\right] \pi_{0} \\
= & \pi_{0}\left(\frac{d}{j+1}\right)^{2}\left(\frac{d!}{(d-j)!j!}\right)^{2}\left[1-\frac{j^{2}}{d^{2}}-\frac{2 j(d-j)}{d^{2}}\right] \\
= & \pi_{0} \frac{d^{2}}{(j+1)^{2}}\left(\frac{d!}{(d-j)!j!}\right)^{2}\left(\frac{d^{2}-j^{2}-2 j d+2 j^{2}}{d^{2}}\right) \\
= & \pi_{0}\left(\frac{d!}{(d-j)!(j+1)!}\right)^{2}(d-j)! \\
= & \pi_{0}(d+1)^{2}
\end{aligned}
$$

So $\pi_{d-1}=\pi_{0}\binom{d}{d-1}^{2}=\pi_{0} d^{2}$
$\pi_{d}=\pi_{0}=\pi_{d}\binom{d}{d}^{2}$
Since $\sum \pi_{j}=1$ we must have

$$
\pi_{0}=\left[\sum_{j=0}^{d}\binom{d}{j}^{2}\right]^{-1}
$$

