QUESTION

Use Gauss' Lemma to decide for each of the following pairs (a, p) whether or not a is a square $\bmod p$.
(i) $(5,23)$
(ii) $(10,17)$
(iii) $(10,13)$.

ANSWER
(i) Here S consists of the first $\frac{(23-1)}{2}=11$ multiples of 5 , viz. $S=\{5,10,15,20,25,30,35,40,45,50,5$? Reducing these to their least positive residues mod 23 gives the set $s^{\prime}=\{5,10, \underline{15}, \underline{20}, 2,7, \underline{12}, \underline{17}$,
$\underline{22}, 4,9\}$. We have underlined those exceeding $\frac{23}{2}$, and we note that there are 5 of them. Thus $n=5,(-1)^{5}=-1$, so $\left(\frac{5}{23}\right)=-1$ and 5 is non-square $\bmod 23$.
(ii) Here $\frac{(P-1)}{2}=\frac{16}{2}=8$, so we want the first 8 multiples of 10 . Thus $S=\{10,20,30,40,50,60,70,80\}$. Reducing to least positive residues $\bmod 17$ gives $S^{\prime}=\{\underline{10}, 3, \underline{13}, 6, \underline{16}, 9,2, \underline{12}\}$ and the ones exceeding $\frac{17}{2}$ have been underlined. Again there are 5 of them, so $n=5,(-1)^{5}=-1$ and $\left(\frac{10}{17}\right)=-1$. Thus 10 is a non-square $\bmod 17$.
(iii) Here $\frac{(p-1)}{2}=\frac{12}{2}=6$, so $S=\{10,20,30,40,50,60\}$. Reducing mod 13 , $S^{\prime}=\{\underline{10}, \underline{7}, 4,1, \underline{11}, \underline{8}\}$, where the entries bigger then $\frac{13}{2}$ are underlined. Thus $n=4,(-1)^{4}=1$, and $\left(\frac{10}{13}\right)=1$. Thus 10 is a square $\bmod 13$. (In fact it is 6^{2}.)

