QUESTION

Given that the numbers 719,853 and 971 are all prime, calculate $\left(\frac{719}{853}\right)$ and $\left(\frac{853}{971}\right)$.
ANSWER
$\left(\frac{719}{853}\right)=\left(\frac{853}{719}\right)$ by the quadratic reciprocity law, as $853 \equiv 1 \bmod 4$. Hence $\left(\frac{719}{853}\right)=\left(\frac{853}{719}\right)=\left(\frac{134}{719}\right)=\left(\frac{2}{719}\right)\left(\frac{67}{719}\right)($ reducing $\bmod 179$ and factorising). Now $\left(\frac{2}{719}\right)=1$ as $719 \equiv 7 \equiv-1 \bmod 8$ (th.7.3), while $\left(\frac{67}{719}\right)=-\left(\frac{719}{67}\right)$ by quadratic reciprocity, as 719 and 67 are both $\equiv 3 \bmod 4$. On reducing mod 67 we see that $\left(\frac{67}{719}\right)=-\left(\frac{719}{67}\right)=-\left(\frac{49}{67}\right)=-\left(\frac{7^{2}}{67}\right)=-1$ (as 7^{2} is clearly a square!) Thus $\left(\frac{719}{853}\right)=1 .-1=-1$ and 719 is not a square $\bmod 853$.
[An alternative approach is to begin by replacing 719 by its least absolute residue $-134 \bmod 853$, and using $\left(\frac{719}{853}\right)=(-134853)=\left(\frac{-1}{853}\right)\left(\frac{134}{853}\right)$ etc. You might like to try this to see which method is quicker.] $\left(\frac{853}{971}\right)=\left(\frac{971}{853}\right)$ by the quadratic reciprocity law, as $853 \equiv 1 \bmod 4$. Thus, on reducing mod 853, and factoring, we get $\left(\frac{853}{971}\right)=\left(\frac{971}{853}\right)=\left(\frac{118}{853}\right)=$ $\left(\frac{2}{853}\right)\left(\frac{59}{853}\right)$. Now $\left(\frac{2}{853}\right)=-1$ as $853 \equiv 5 \equiv-3 \bmod 8$ (th.7.3). As 59 is prime, we may again assume quadratic reciprocity, and as $853 \equiv 1 \bmod 4$, we get $\left(\frac{59}{853}\right)=\left(\frac{853}{59}\right)=\left(\frac{27}{59}\right)=\left(\frac{3^{2}}{59}\right)\left(\frac{3}{59}\right)=\left(\frac{3}{59}\right)$ (by reducing mod 59, factoring and using $\left(\frac{a^{2}}{p}\right)=1$.) Now 3 is prime, and as 59 and 3 are both congruent to $3 \bmod 4$, quadratic reciprocity gives $\left(\frac{3}{59}\right)=-\left(\frac{59}{3}\right)=-\left(\frac{2}{3}\right)=-(-1)=1$ (using th.7.3 again).
Thus $\left(\frac{59}{853}\right)=1$ and so $\left(\frac{853}{971}\right)=(-1) \cdot 1=-1$, and 853 is not a square mod 971.

