QUESTION

(i) Prove that there are infinitely many primes congruent to 3 mod 8.

[Hint: Suppose $p_1, p_2 \dots, p_n$ are the only such primes. Consider $N = (p_1 p_2 \dots p_n)^2 + 2$, and use the result of question 5.]

(ii) Prove that there are infinitely many primes congruent to 1 mod 6.

[Hint: Suppose $p_1, p_2 \dots, p_n$ are the only such primes. Consider $(2p_1p_2 \dots p_n)^2 + 2$ and use the result of question 5.]

ANSWER

(i) Following the hint, suppose $p_1, p_2 \dots p_n$ are the only primes $\equiv 3 \mod 8$. (The list is non-empty- $p_1 = 3, p_2 = 11$, etc.) Set $N = (p_1 p_2 \dots p_n)^2 + 2$. Now each p_I is odd, so N is odd, and hence all prime divisors of N ore odd. Let p be a prime divisor of N. Then $N \equiv 0 \mod p$, so that $(p_1 p_2 \dots p_n)^2 \equiv -2 \mod p$. This shows that -2 is a square mod p, so that $\left(\frac{-2}{p}\right) = 1$. Thus we may use question 5(i) to deduce that $p \equiv 1$ or $3 \mod 8$.

Now identify (8k + 1)(8l + 1) = 8(8kl + k + l) + 1 shows that if every prime dividing N is $\equiv 1 \mod 8$, then N is also $\equiv 1 \mod 8$. But $N = (p_1p_2 \dots p_n)^2 + 2 = p_1^2p_2^2 \dots p_n^2 + 2$, and as each $p_i \equiv 3 \mod 8$, each $p_I^2 \equiv 9 \equiv 1 \mod 8$. Thus $p_1^2p_2^2 \dots p_n^2 \equiv 1 \mod 8$, so $N \equiv 1 + 2 \equiv 3 \mod 8$. Thus N has at least one prime divisor $p \equiv 3 \mod 8$. As p_1, p_2, \dots, p_n are the only primes $\equiv 3 \mod 8$, $p = p_i$ for some i. Thus $p|p_1p_2 \dots p_n$. But p|N. Hence $p|N - (p_1p_2 \dots p_n)^2 = 2$. But we have already remarked that every prime divisor of N is odd, so $p \neq 2$. This contradiction shows that our original assumption was wrong, so there are infinitely many primes congruent to 3 mod 8.

(ii) Suppose p_1, p_2, \ldots, p_n are the only primes $\equiv 1 \mod 6$. (The list is nonempty, e.g. $p_1 = 7$) Set $N = (2p_1p_2 \ldots p_n)^2 + 3$. We note that as $3 \not p_i$ for each $i, 3 \not N$. Also N is odd, so each prime divisor of N is odd.

Let p be a prime divisor of N. Then $N \equiv 0 \mod p$, so $(2p_1p_2...p_n)^2 \equiv -3 \mod p$, and so $\left(\frac{-3}{p}\right) = 1$, Thus by question 5(ii), $p \equiv 1 \mod 6$. But by assumption, $p_1, p_2...p_n$ are the only primes $\equiv 1 \mod 6$. Thus $p = p_i$ for some i, and hence $p|(2p_1p_2...p_n)$. But p|N, so $p|N - (2p_1p_2...p_n)^2 = 3$. But we have already seen 3 / N, so $p \neq 3$. This contradiction shows that our original assumption was wrong, and so there are infinitely many primes $\not\equiv 1 \mod 6$.