QUESTION

(i) Prove that there are infinitely many primes congruent to $3 \bmod 8$.
[Hint: Suppose $p_{1}, p_{2} \ldots, p_{n}$ are the only such primes. Consider $N=$ $\left(p_{1} p_{2} \ldots p_{n}\right)^{2}+2$, and use the result of question 5.]
(ii) Prove that there are infinitely many primes congruent to $1 \bmod 6$.
[Hint: Suppose $p_{1}, p_{2} \ldots, p_{n}$ are the only such primes. Consider $\left(2 p_{1} p_{2} \ldots p_{n}\right)^{2}+$ 2 and use the result of question 5.]

ANSWER
(i) Following the hint, suppose $p_{1}, p_{2} \ldots p_{n}$ are the only primes $\equiv 3 \bmod 8$. (The list is non-empty- $p_{1}=3, p_{2}=11$, etc.) Set $N=\left(p_{1} p_{2} \ldots p_{n}\right)^{2}+2$. Now each p_{I} is odd, so N is odd, and hence all prime divisors of N ore odd. Let p be a prime divisor of N. Then $N \equiv 0 \bmod p$, so that $\left(p_{1} p_{2} \ldots p_{n}\right)^{2} \equiv-2 \bmod p$. This shows that -2 is a square $\bmod p$, so that $\left(\frac{-2}{p}\right)=1$. Thus we may use question $5(\mathrm{i})$ to deduce that $p \equiv 1$ or $3 \bmod 8$.
Now identify $(8 k+1)(8 l+1)=8(8 k l+k+l)+1$ shows that if every prime dividing N is $\equiv 1 \bmod 8$, then N is also $\equiv 1 \bmod 8$. But $N=\left(p_{1} p_{2} \ldots p_{n}\right)^{2}+2=p_{1}^{2} p_{2}^{2} \ldots p_{n}^{2}+2$, and as each $p_{i} \equiv 3 \bmod 8$, each $p_{I}^{2} \equiv 9 \equiv 1 \bmod 8$. Thus $p_{1}^{2} p_{2}^{2} \ldots p_{n}^{2} \equiv 1 \bmod 8$, so $N \equiv 1+2 \equiv 3$ $\bmod 8$. Thus N has at least one prime divisor $p \equiv 3 \bmod 8$. As $p_{1}, p_{2}, \ldots, p_{n}$ are the only primes $\equiv 3 \bmod 8, p=p_{i}$ for some i. Thus $p \mid p_{1} p_{2} \ldots p_{n}$. But $p \mid N$. Hence $p \mid N-\left(p_{1} p_{2} \ldots p_{n}\right)^{2}=2$. But we have already remarked that every prime divisor of N is odd, so $p \neq 2$. This contradiction shows that our original assumption was wrong, so there are infinitely many primes congruent to $3 \bmod 8$.
(ii) Suppose $p_{1}, p_{2}, \ldots, p_{n}$ are the only primes $\equiv 1 \bmod 6$. (The list is nonempty, e.g. $p_{1}=7$) Set $N=\left(2 p_{1} p_{2} \ldots p_{n}\right)^{2}+3$. We note that as $3 \not \backslash p_{i}$ for each $i, 3 \nmid N$. Also N is odd, so each prime divisor of N is odd.
Let p be a prime divisor of N. Then $N \equiv 0 \bmod p$, so $\left(2 p_{1} p_{2} \ldots p_{n}\right)^{2} \equiv$ $-3 \bmod p$, and so $\left(\frac{-3}{p}\right)=1$, Thus by question $5(\mathrm{ii}), p \equiv 1 \bmod 6$. But by assumption, $p_{1}, p_{2} \ldots p_{n}$ are the only primes $\equiv 1 \bmod 6$. Thus $p=p_{i}$ for some i, and hence $p \mid\left(2 p_{1} p_{2} \ldots p_{n}\right)$. But $p \mid N$, so $p \mid N-$ $\left(2 p_{1} p_{2} \ldots p_{n}\right)^{2}=3$. But we have already seen $3 \backslash N$, so $p \neq 3$. This contradiction shows that our original assumption was wrong, and so there are infinitely many primes $\not \equiv 1 \bmod 6$.

