QUESTION

Suppose p is an odd prime, and that $q=4 p+1$ is also a prime. Show that $\left(\frac{2}{q}\right)=-1$, and hence prove that 2 is a primitive root $\bmod q$. ANSWER
As p is odd, $p=2 t+1$ for some $t \in Z$. Thus $q=4 p+1=8 t+4+1=8 t+5$, so that $q \equiv 5 \bmod 8$. Thus $\left(\frac{2}{q}\right)=-1$ by th. 7.3. Hence, by Euler's criterion (th.6.5), $2^{\frac{(q-1)}{2}} \equiv-1 \bmod q$, i.e. $2^{2 p} \equiv-1 \bmod q$. Now q is prime, so $\phi(q)=q-1=4 p$. Hence the possible orders of $2 \bmod q$ are the divisors of $4 p$, viz. $1,2,4, p, 2 p$ and $4 p$. If the order of 2 were $1,2, p$ or $2 p$, then $262 p$ would be $\equiv 1 \bmod q$. But we've seen $2^{2 p} \equiv-1 \not \equiv 1 \bmod q($ as q is odd), so the order can only be 4 or $4 p$. The order is not 4 as $2^{4}=16$, and this would be $\equiv 1 \bmod q$ only if q were a divisor of 15 , i.e. 3 or 5 . But $q=4 p+1 \geq 4.3+1$ (as q is odd, so ≥ 3), so q cannot be 3 or 5 . Thus the order of $2 \bmod q$ is none of $1,2,4, p, 2 p$ and so it must be $4 p(=\phi(q))$, so 2 is a primitive root $\bmod q$, as required.

