QUESTION

Suppose p is an odd prime, and that q = 4p + 1 is also a prime. Show that $\left(\frac{2}{q}\right) = -1$, and hence prove that 2 is a primitive root mod q. ANSWER

As p is odd, p = 2t + 1 for some $t \in Z$. Thus q = 4p + 1 = 8t + 4 + 1 = 8t + 5, so that $q \equiv 5 \mod 8$. Thus $\left(\frac{2}{q}\right) = -1$ by th. 7.3. Hence, by Euler's criterion (th.6.5), $2^{\frac{(q-1)}{2}} \equiv -1 \mod q$, i.e. $2^{2p} \equiv -1 \mod q$. Now q is prime, so $\phi(q) = q - 1 = 4p$. Hence the possible orders of 2 mod q are the divisors of 4p, viz. 1, 2, 4, p, 2p and 4p. If the order of 2 were 1, 2, p or 2p, then 262p would be $\equiv 1 \mod q$. But we've seen $2^{2p} \equiv -1 \not\equiv 1 \mod q$ (as q is odd), so the order can only be 4 or 4p. The order is not 4 as $2^4 = 16$, and this would be $\equiv 1 \mod q$ only if q were a divisor of 15, i.e. 3 or 5. But $q = 4p + 1 \ge 4.3 + 1$ (as q is odd, so ≥ 3), so q cannot be 3 or 5. Thus the order of 2 mod q is none of 1, 2, 4, p, 2p and so it must be $4p(=\phi(q))$, so 2 is a primitive root mod q, as required.