QUESTION

Find an integer n that can be written as a sum of two squares in two essentially different ways; i.e. $n=u^{2}+v^{2}=w^{2}+x^{2}$ where $w \neq \pm u, \pm v$.
[Hint: recall $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c+b d)^{2}+(a d-b c)^{2}$. What happens when we exchange c and d ?]
ANSWER
$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c+b d)^{2}+(a d-b c)^{2}$, and $\left(a^{2}+b^{2}\right)\left(d^{2}+c^{2}\right)=(a d+$ $b c)^{2}+(a c-b d)^{2}$.
These two expressions could turn out to be different, e.g. $5=2^{2}+1^{2}$, and $17=4^{2}+1^{2}$. Thus, as above, we have $85=5.17=\left(2^{2}+1^{2}\right)\left(4^{2}+1^{2}\right)=$ $(8+1)^{2}+(2-4)^{2}=9^{2}+2^{2}$, and $85=5.17=\left(2^{2}+1^{2}\right)\left(1^{2}+4^{2}\right)=(2+$ $\left.4)^{2}\right)(8-1)^{2}=6^{2}+7^{2}$.
[Plenty of other examples are available- so your answer may well be different.]

