Question

Show that the following can be made exact using an integrating factor that only depends on x and hence find the solution in each case.

1. $\left(x^{2}+2 y\right) d x-x d y=0$
2. $\left(x e^{x}+x \ln y+y\right) d x+\left(\frac{x^{2}}{y}+x \ln x+x \sin y\right) d y=0$

Answer

a) $p=x^{2}+2 y, \quad q=-x, \Rightarrow \frac{\partial p}{\partial y}=2, \quad \frac{\partial q}{\partial x}=-1 \Rightarrow$ not exact.

Now, either guess a possible multiple to make the equation exact or multiply by $H(x) \Rightarrow p=\left(x^{2}+2 y\right) H, \quad q=-x H$.
$\Rightarrow \frac{\partial p}{\partial y}=2 H, \quad \frac{\partial q}{\partial x}=-H-x \frac{d H}{d x}$ so for it to be exact we need
$2 H=-H-x \frac{d H}{d x} \Rightarrow 3 H=-x \frac{d H}{d x} \Rightarrow \int \frac{1}{x} d x=\int \frac{1}{3 H} d H$
$\ln x+A=\frac{1}{3} \ln H \Rightarrow H=(x+A)^{-3}$, we only need one H so let $A=0 \Rightarrow H=x^{-3}$.
Now the equation is $\left(\frac{1}{x}+\frac{2 y}{x^{3}}\right) d x-\frac{1}{x^{2}} d y=0$
$p=\frac{1}{x}+\frac{2 y}{x^{3}}, \quad q=-\frac{1}{x^{2}}, \quad \frac{\partial F}{\partial x}=\frac{1}{x}+\frac{2 y}{x^{3}}, \quad \frac{\partial F}{\partial y}=-\frac{1}{x^{2}}$
$\Rightarrow F=-\frac{y}{x^{2}}+g(x) \Rightarrow \frac{\partial F}{\partial x}=\frac{2 y}{x^{3}}+\frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{x} \Rightarrow y=\ln x+c$
so the solution is $-\frac{y}{x^{2}}+\ln x=A$ or $y=x^{2}(c+\ln x)$
b) Can do in the same way as 5 a) or notice that with $q=\frac{x^{2}}{y}+x \ln x+x \sin y$ when you evaluate $\frac{\partial q}{\partial x}$ you get a term with $\sin y$ and there is no such term in $p(x, y)$ or $\frac{\partial p}{\partial y}$. Hence multiply equation by $\frac{1}{x}$ to get
$\left(e^{x}+\ln y+\frac{y}{x}\right) d x+\left(\frac{x}{y}+\ln x+\sin y\right) d y=0$ which is exact.
The solution is $e^{x}+x \ln y+y \ln x-\cos y=A$

