Question

Write down an explicit formula for the stereographic projection map from the Euclidean circle in \mathbf{C} with center $3+2 i$ and radius 3 to the horizontal Euclidean line through $3+5 i$ (union $\{\infty\}$).
Answer

(remember to project from the point on the circle C opposite from the point of tangency of C and L).
equation of line through N, Z :

- $m=\frac{-1-\operatorname{Im}(\mathrm{z})}{3-\operatorname{Re}(\mathrm{z})}$
- equation:

$$
\begin{aligned}
y+1 & =m(x-3) \\
y+1 & =\frac{-1-\operatorname{Im}(\mathrm{z})}{3-\operatorname{Re}(z)}(x-3)
\end{aligned}
$$

- Set $y=5$ (to get the intersection with L) and solve for x :
$-6 \cdot \frac{3-\operatorname{Re}(z)}{1+\operatorname{Im}(\mathrm{z})}=x-3$
$x=-6 \cdot \frac{3-\operatorname{Re}(z)}{1+\operatorname{Im}(z)}+3$.
So $\xi(z)= \begin{cases}-6 \cdot \frac{3-\operatorname{Re}(z)}{1+\operatorname{Im}(z)}+3+5 i & z \neq N \\ \infty & z=N\end{cases}$

