Question

Prove, using the definition, that the function $f: \overline{\mathbf{C}} \rightarrow \overline{\mathbf{C}}$ given by $f(z)=\frac{2}{z^{3}}$ for $z \in \mathbf{C}-\{0\}, f(0)=\infty$, and $f(\infty)=0$, is continuous.
Determine whether or not this map f is a homeomorphism of $\overline{\mathbf{C}}$.
Answer
Note that $f(z)$ is the composition of $J(z)=\frac{1}{z}(J(0)=\infty, J(\infty)=0)$ and the polynomial $g(z)=\frac{1}{2} z^{3}(g(\infty)=\infty)$.
J is continuous by proposition 1.9 (in the book). g is continuous by exercise 1.14 (in the book), and composition of continuous functions is continuous (from class). So f is continuous.
f is not a homeomorphism, as it is not injective:
$f(z)=-1$ has 3 solutions, namely $-\sqrt[3]{2},-\sqrt[3]{2} \omega$, and $-\sqrt[3]{2} \omega^{2}$ where $\omega=\exp \left(\frac{2 \pi \mathrm{i}}{3}\right)$.

