Question

Bessel functions (of order v) are denoted by $J_{v}(x)$. They arise very frequently in the solution of wave problems with cylindrical symmetry. It is often required to know where the zero values of $J_{v}(x)$ are as a function of $\mathrm{f} x$ (being related to eigenvalues, energy levels or frequencies of vibration etc. or the problem in question).
The large x asymptotic expansion for $J_{0}(x)$ is given by,

$$
J_{0}(x) \sim \sqrt{\frac{2}{\pi}}\left[\frac{\cos \left(x-\frac{\pi}{4}\right)}{x^{\frac{1}{2}}}+\frac{\sin \left(x-\frac{\pi}{4}\right)}{8 x^{\frac{3}{2}}}\right]+O\left(\frac{1}{x^{\frac{5}{2}}}\right)
$$

(i) Show that the roots as $x \rightarrow+\infty$ are given by \cdots

$$
x \sim\left(n-\frac{1}{4}\right) \pi+\frac{1}{8\left(n+\frac{1}{4}\right) \pi}+\cdots, n \rightarrow+\infty
$$

(ii) Compare these with the first five numerically evaluate roots, and comment on this, given that n is a measure of the size of x.

Index	1	2	3	4	5
Root	$2.40482 \ldots$	$5.52007 \ldots$	$8.65372 \ldots$	$11.79153 \ldots$	$14.93091 \ldots$

Answer

(i) Clearly $J_{0}(x)$ is approximately zero (to $O\left(x^{-2}\right)$)
when

$$
\begin{aligned}
\frac{\cos \left(x-\frac{\pi}{4}\right)}{x^{\frac{1}{2}}} & =-\frac{\sin \left(x-\frac{\pi}{4}\right)}{8 x^{\frac{3}{2}}} \\
\Rightarrow \cot \left(x-\frac{\pi}{4}\right) & =-\frac{1}{8 x}(\star)(\star)
\end{aligned}
$$

so for $x \rightarrow \infty$ $\cot \left(x-\frac{\pi}{4}\right)=0$ is a first approximation

$$
\begin{aligned}
-\frac{\pi}{4}+x & =\left(m+\frac{1}{2}\right) \pi \quad m \text { integer } \\
x & =\left(m+\frac{3}{4}\right) \pi
\end{aligned}
$$

Calling $m=n-1$ say we get (n another integer)

$$
x=\left(n-\frac{1}{4}\right) \pi
$$

Now to improve, let $n=\left(n-\frac{1}{4}\right) \pi+\delta, \delta=o(1)$
Substitute into $(\star)(\star)$

$$
\begin{aligned}
& \cot \left(\left(n-\frac{1}{2}\right) \pi+\delta\right)=-\frac{1}{8\left[\left(n-\frac{1}{4}\right) \pi+\delta\right]} \\
& -\tan \delta=-\frac{1}{8\left[\left(n-\frac{1}{4}\right) \pi+\delta\right]}
\end{aligned}
$$

So expand to $O(\delta)$ on LHS

$$
-\delta==-\frac{1}{8\left[\left(n-\frac{1}{4}\right) \pi+\delta\right]}
$$

Hence roots are $x=\left(n-\frac{1}{4}\right) \pi+=-\frac{1}{8\left[\left(n-\frac{1}{4}\right) \pi+\delta\right]}+\cdots$

$$
\left(=o\left(\frac{1}{n}\right)\right), \quad n \rightarrow \infty
$$

(ii)

$$
\begin{array}{rccccc}
n= & 1 & 2 & 3 & 4 & 5 \\
\text { exact }= & 2.40482 . . & 5.52007 . . & 8.65372 . . & 11.79153 . . & 14.93091 . . \\
\text { approx. }= & 2.40925 . . & 5.52052 . . & 8.65385 . . & 11.79158 . . & 14.93094 . . \\
\% \text { orror }= & 0.18 \% & 0.008 \% & 0.001 \% & 0.0004 \% & 0.0002 \% \\
\left|\frac{\text { exact }- \text { approx }}{\text { exact }}\right| \times 100 \\
\text { so it seems even } n=1 \text { is a large parameter!!!! }
\end{array}
$$

