Question

Bessel functions (of order v) are denoted by $J_v(x)$. They arise very frequently in the solution of wave problems with cylindrical symmetry. It is often required to know where the zero values of $J_v(x)$ are as a function of x (being related to eigenvalues, energy levels or frequencies of vibration etc. or the problem in question).

The large x asymptotic expansion for $J_0(x)$ is given by,

$$J_0(x) \sim \sqrt{\frac{2}{\pi}} \left[\frac{\cos(x - \frac{\pi}{4})}{x^{\frac{1}{2}}} + \frac{\sin(x - \frac{\pi}{4})}{8x^{\frac{3}{2}}} \right] + O\left(\frac{1}{x^{\frac{5}{2}}}\right)$$

(i) Show that the roots as $x \to +\infty$ are given by \cdots

$$x \sim \left(n - \frac{1}{4}\right)\pi + \frac{1}{8(n + \frac{1}{4})\pi} + \cdots, \ n \to +\infty$$

(ii) Compare these with the first five numerically evaluate roots, and comment on this, given that n is a measure of the size of x.

Answer

(i) Clearly $J_0(x)$ is approximately zero (to $O(x^{-2})$)

when

$$\frac{\cos(x - \frac{\pi}{4})}{x^{\frac{1}{2}}} = -\frac{\sin(x - \frac{\pi}{4})}{8x^{\frac{3}{2}}}$$

$$\Rightarrow \cot\left(x - \frac{\pi}{4}\right) = -\frac{1}{8x} (\star)(\star)$$

so for $x \to \infty$
 $\cot\left(x - \frac{\pi}{4}\right) = 0$ is a first approximation
 $-\frac{\pi}{4} + x = \left(m + \frac{1}{2}\right)\pi$ m integer
 $x = \left(m + \frac{3}{4}\right)\pi$

Calling m = n - 1 say we get (*n* another integer)

$$x = \left(n - \frac{1}{4}\right)\pi$$

Now to improve, let $n = \left(n - \frac{1}{4}\right)\pi + \delta$, $\delta = o(1)$ Substitute into $(\star)(\star)$ $\cot\left(\left(n - \frac{1}{2}\right)\pi + \delta\right) = -\frac{1}{8[(n - \frac{1}{4})\pi + \delta]}$ $-\tan \delta = -\frac{1}{8[(n - \frac{1}{4})\pi + \delta]}$ So expand to $O(\delta)$ on LHS $-\delta == -\frac{1}{2[(n - \frac{1}{4})\pi + \delta]}$

Hence roots are
$$x = \left(n - \frac{1}{4}\right)\pi + \delta$$

 $\left(= o\left(\frac{1}{n}\right)\right), \quad n \to \infty$

(ii)

n =	1	2	3	4	5
exact =	2.40482	5.52007	8.65372	11.79153	14.93091.
approx. $=$	2.40925	5.52052	8.65385	11.79158	14.93094.
%error =	0.18%	0.008%	0.001%	0.0004%	0.0002%
$\left \frac{\text{exact}-\text{approx}}{\text{exact}}\right \times 100$					
so it seems even $n = 1$ is a large parameter!!!					