
Question
Bessel functions (of order v) are denoted by Jv(x). They arise very frequently
in the solution of wave problems with cylindrical symmetry. It is often re-
quired to know where the zero values of Jv(x) are as a function o fx (being
related to eigenvalues, energy levels or frequencies of vibration etc. or the
problem in question).
The large x asymptotic expansion for J0(x) is given by,

J0(x) ∼

√

2

π

[

cos(x− π
4
)

x
1

2

+
sin(x− π

4
)

8x
3

2

]

+O

(

1

x
5

2

)

(i) Show that the roots as x→ +∞ are given by · · ·
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(ii) Compare these with the first five numerically evaluate roots, and com-
ment on this, given that n is a measure of the size of x.

Index 1 2 3 4 5
Root 2.40482... 5.52007... 8.65372... 11.79153... 14.93091...

Answer

(i) Clearly J0(x) is approximately zero (to O(x−2))
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so for x→∞
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Calling m = n− 1 say we get (n another integer)
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Now to improve, let n =
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So expand to O(δ) on LHS
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(ii)

n = 1 2 3 4 5
exact = 2.40482.. 5.52007.. 8.65372.. 11.79153.. 14.93091..

approx. = 2.40925.. 5.52052.. 8.65385.. 11.79158.. 14.93094..
%error = 0.18% 0.008% 0.001% 0.0004% 0.0002%
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so it seems even n = 1 is a large parameter!!!
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