Question

In analysing the linear-free vibrations of a uniform clamped-beam, one encounters the eigenvalue problem

$$
\cos \lambda \cosh \lambda=-1
$$

Show that for n integer,

$$
\lambda \sin \left(n-\frac{1}{2}\right) \pi+2 e^{-\left(n-\frac{1}{2}\right) \pi} \sin \left(n-\frac{1}{2}\right) \pi, n \rightarrow+\infty
$$

Answer

$\cosh \lambda \rightarrow \infty$ as $\lambda \rightarrow \infty$ so

$$
\cos \lambda=-\frac{1}{\cosh \lambda} \rightarrow 0 \text { as } \lambda \rightarrow \infty
$$

Therefore we look for large λ solutions $\lambda \approx\left(n-\frac{1}{2}\right) \pi n$ integer, being the zeros of $\cos \lambda$.
So try $\lambda=\left(n-\frac{1}{2}\right) \pi+\delta, \delta=o(1)$.
Substitute back into full equation.

$$
\cos \left(\left(n-\frac{1}{2}\right) \pi+\delta\right)=-\frac{1}{\cosh \left(\left(n-\frac{1}{2}\right) \pi+\delta\right)}
$$

