Question

Sketch the graphs of $\cot x$ and $\frac{1}{x}$. Show that the solutions of $x \cot x=1$ behave like

$$
x=\left(1+\frac{1}{2}\right) \pi-\frac{1}{\left(n+\frac{1}{2}\right) \pi}+\cdots, n \text { integer. }
$$

Answer
PICTURE

Look for $x \cot x=1 \Rightarrow \cot x=\frac{1}{x}$.
As $x \rightarrow \infty \frac{1}{x} \rightarrow 0$
Therefore if it crosses $\cot x$ it does so near to $\cot x=0$.
$\cot x=0$ at $x=\left(n+\frac{1}{2}\right) \pi$ where n is an integer.
(since $\tan \left(n+\frac{1}{2}\right) \pi \rightarrow \pm \infty$)
Therefore first guess is $x=\left(n+\frac{1}{2}\right) \pi+\delta$ where $\delta \ll\left(n+\frac{1}{2}\right) \pi$

$$
\begin{aligned}
\cot \left[\left(n+\frac{1}{2}\right) \pi+\delta\right] & =\frac{1}{\tan \left(\left(n+\frac{1}{2} \pi\right)+\delta\right)} \\
& =\frac{1-\tan \left(n+\frac{1}{2}\right) \pi \tan \delta}{\tan \left(n+\frac{1}{2}\right) \pi+\tan \delta} \\
& =-\tan \delta
\end{aligned}
$$

Therefore $-\tan \delta=\frac{1}{\left(n+\frac{1}{2}\right) \pi+\delta}$ is the equation to solve for δ.
$\tan \delta=\delta+\frac{\delta^{3}}{3}+O\left(\delta^{5}\right)$
Therefore $-\delta-\frac{\delta^{3}}{3}+\mathrm{O}\left(\delta^{5}\right)=\frac{1}{\left(\mathrm{n}+\frac{1}{2}\right) \pi+\delta}$
$\Rightarrow-\left(n+\frac{1}{2}\right) \pi \delta+O\left(\delta^{2}\right)=1$
$\Rightarrow \delta \approx-\frac{1}{\left(n+\frac{1}{2}\right) \pi}$
,
so $x=\left(n+\frac{1}{2}\right) \pi-\frac{1}{\left(n+\frac{1}{2}\right) \pi}+\cdots \quad n \rightarrow \infty($ hence $x \rightarrow \infty)$

