Question

Sketch the graphs of $\cot x$ and $\frac{1}{x}$. Show that the solutions of $x \cot x = 1$ behave like

$$x = (1 + \frac{1}{2})\pi - \frac{1}{(n + \frac{1}{2})\pi} + \cdots, n$$
 integer.

Answer PICTURE

Look for $x \cot x = 1 \Rightarrow \cot x = \frac{1}{x}$. As $x \to \infty \frac{1}{x} \to 0$ Therefore if it crosses $\cot x$ it does so near to $\cot x = 0$. $\cot x = 0$ at $x = \left(n + \frac{1}{2}\right)\pi$ where *n* is an integer. (since $\tan\left(n + \frac{1}{2}\right)\pi \to \pm \infty$) Therefore first guess is $x = \left(n + \frac{1}{2}\right)\pi + \delta$ where $\delta \ll \left(n + \frac{1}{2}\right)\pi$

$$\cot\left[\left(n+\frac{1}{2}\right)\pi+\delta\right] = \frac{1}{\tan\left((n+\frac{1}{2}\pi)+\delta\right)}$$
$$= \frac{1-\tan\left(n+\frac{1}{2}\right)\pi\tan\delta}{\tan\left(n+\frac{1}{2}\right)\pi+\tan\delta}$$
$$= -\tan\delta$$
$$= -\tan\delta$$
$$Therefore - \tan\delta = \frac{1}{(n+\frac{1}{2})\pi+\delta} \text{ is the equation to solve for } \delta.$$
$$\tan\delta = \delta + \frac{\delta^3}{3} + O(\delta^5)$$
$$Therefore - \delta - \frac{\delta^3}{3} + O(\delta^5) = \frac{1}{(n+\frac{1}{2})\pi+\delta}$$
$$\Rightarrow - \left(n+\frac{1}{2}\right)\pi\delta + O(\delta^2) = 1$$
$$\Rightarrow \delta \approx -\frac{1}{(n+\frac{1}{2})\pi}$$
$$so \ x = \left(n+\frac{1}{2}\right)\pi - \frac{1}{(n+\frac{1}{2})\pi} + \cdots \quad n \to \infty \text{ (hence } x \to \infty)$$