Question

Describe briefly a Markov chain.
(a) A Markov chain $\left\{X_{n}\right\} \quad n=0,1,2, \ldots$ has only two states and for $n=$ $1,2, \ldots$

$$
\begin{aligned}
& P\left(X_{n}=1 \mid X_{n-1}=0\right)=p \\
& P\left(X_{n}=0 \mid X_{n-1}=1\right)=\alpha
\end{aligned}
$$

Prove that

$$
P\left(X_{1}=0 \mid X_{0}=0, X_{2}=0\right)=\frac{(1-p)^{2}}{(1-p)^{2}+p \alpha}
$$

(b) A Markov chain with statespace composed of all the non-negative integers has one-step transition probabilities defined for $j=0,1,2, \ldots$ by

$$
P_{j, j+1}=p,
$$

and

$$
P_{j, 0}=1-p,
$$

where $0<p<1$.
Find the probability that, stating from state 0 , the system will return to state 0 for the first time at the n-th step $(n \geq 1)$. Hence, or otherwise, show that state 0 is positive recurrent.

Answer

A Markov chain is a sequence $\left(X_{n}\right)$ of integer - valued random variables with the property that

$$
P\left(X_{n}=k \mid X_{0}=a_{0}, X_{1}=a_{1}, \ldots, X_{n-1}=j\right)=P\left(X_{n}=k \mid X_{n-1}=j\right)
$$

This is the Markov property.
(a) $P\left(X_{1}=0 \mid X_{0}=0 \& X_{2}=0\right)$

$$
\begin{aligned}
& =\frac{P\left(X_{1}=0 \& X_{0}=0 \& X_{2}=0\right)}{P\left(X_{0}=0 \& X_{2}=0\right)} \\
& =\frac{P\left(X_{1}=0 \& X_{0}=0 \& X_{2}=0\right)}{P\left(X_{0}=0 \& X_{1}=0 \& X_{2}=0\right)+P\left(X_{0}=0 \& X_{1}=1 \& X_{2}=0\right)} \\
& =\frac{P\left(X_{2}=0 \mid X_{1}=0 \& X_{0}=0\right) P\left(X_{1}=0 \mid X_{0}=0\right) P\left(X_{0}=0\right)}{\text { Num. }+P\left(X_{2}=0 \mid X_{1}=1 \& X_{0}=0\right) P\left(X_{1}=1 \mid X_{0}=0\right) P\left(X_{0}=0\right)}
\end{aligned}
$$

[where Num. = numerator]
Using the Markov property and cancelling $P\left(X_{0}=0\right)$ this reduces to

$$
\frac{(1-p)^{2}}{(1-p)^{2}+p \alpha}
$$

(b) To arrive at state 0 for the first time at step n, the Markov chain must follow the path

$$
0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \rightarrow n-1 \rightarrow 0
$$

and so the required probability is $p^{n-1}(1-p)$.
The probability of eventual return is

$$
\sum_{n=1}^{\infty} p^{n-1}(1-p)=1 \quad(0<p<1)
$$

The mean recurrence time is

$$
(1-p) \sum_{n=1}^{\infty} n p^{n-1}=\frac{1}{1-p}<\infty \text { for } 0<p<1
$$

So the state 0 is positive recurrent.

