Question

(a) A six state Markov chain has the probability transition matrix P given below. Classify the states as positive recurrent, null recurrent or transient. Obtain the mean recurrence times for all positive recurrent states.

$$
P=\left(\begin{array}{cccccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{8} & 0 & \frac{7}{8} & 0 \\
\frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & \frac{3}{4} & 0 & \frac{1}{4} & 0 \\
0 & \frac{1}{5} & 0 & \frac{1}{5} & \frac{1}{5} & \frac{2}{5}
\end{array}\right)
$$

(b) Balls are thrown independently into N boxes so that each ball has a probability $\frac{1}{N}$ of falling into each box. Let X_{n} be the number of empty boxes after n balls have been thrown. Does $\left\{X_{n}\right\} \quad n=1,2, \ldots$ form a Markov chain? If $p_{n}(\mathrm{k})$ denotes the probability that $X_{n}=k$ show that

$$
p_{n+1}(k)=\left(1-\frac{k}{N}\right) p_{n}(k)+\frac{k+1}{N} p_{n}(k+1) \quad \text { for } \quad k=0,1, \ldots, N-1
$$

Answer

(a) The transition matrix P is:

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6
\end{aligned}\left(\begin{array}{cccccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{8} & 0 & \frac{7}{8} & 0 \\
\frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & \frac{3}{4} & 0 & \frac{1}{4} & 0 \\
0 & \frac{1}{5} & 0 & \frac{1}{5} & \frac{1}{5} & \frac{2}{5}
\end{array}\right)
$$

$\{1,2\}$ and $\{3,5\}$ are closed sets and constitute subchains which are ergodic.
The 2×2 chain with $P=\left(\begin{array}{cc}1-p & p \\ \alpha & 1-\alpha\end{array}\right)$
has equilibrium distribution $\left(\frac{\alpha}{\alpha+p}, \frac{p}{\alpha+p}\right)$.
Mean recurrence times are $\frac{\alpha+p}{\alpha}$ and $\frac{\alpha+p}{p}$ so in these cases we have

$$
\mu_{1}=\frac{5}{2} \quad \mu_{2}=\frac{5}{3} \quad \mu_{3}=\frac{13}{6} \quad \mu_{5}=\frac{13}{7}
$$

States 4 and 6 intercommunicate and are of the same type.

$$
\begin{aligned}
f_{44} & =\frac{1}{4} \cdot \frac{1}{5}+\frac{1}{4} \cdot \frac{2}{5} \cdot \frac{1}{5}+\frac{1}{4} \cdot\left(\frac{2}{5}\right)^{2} \cdot \frac{1}{5}+\ldots \\
& =\frac{1}{4} \cdot \frac{1}{5}\left(1+\frac{2}{5}+\left(\frac{2}{5}\right)^{2}+\ldots\right) \\
& =\frac{1}{12}<1
\end{aligned}
$$

so 4 and 6 are transient.
(b) $P\left(X_{n}=a \mid X_{n}=a_{n-1}, \ldots.\right)=P\left(X_{n}=a \mid X_{n-1}=a_{n-1}\right)$

The number of empty boxes after n balls have been thrown depends only on how many boxes were empty after $(n-1)$ balls had been thrown, together with the result of the n-th throw.

For $k<N$ we have

$$
\begin{aligned}
& P\left(X_{n+1}=k\right)= P\left(X_{n}=k \text { and ball }(n+1)\right. \text { lands in a } \\
& \text { non empty box) } \\
&+P\left(X_{n}=k+1 \text { and ball }(n+1)\right. \text { lands in an } \\
&\text { empty box }) \\
&=\left(1-\frac{k}{N}\right) P\left(X_{n}=k\right)+\frac{k+1}{N} P\left(X_{n}=k+1\right) \\
& \text { i.e. } p_{n+1}=\left(1-\frac{k}{N}\right) p_{n}(k)+\frac{k+1}{N} p_{n}(k+1)
\end{aligned}
$$

