Question

A firm of consultants wins contracts according to a Poisson process with rate λ . The contracts yield income $\pounds Y_i$ $i=1,2,\ldots$ which are independent and identically distributed random variables with distribution

$$p\{Y=y\} = \frac{\alpha^y}{\lambda y}$$
 for $y = 1, 2, ...,$ where $\alpha = 1 - e^{-\lambda}$.

Let X(t) denote the total value of the contracts obtained in a time interval of length t. Prove that the probability generating function for X(t) is

$$G(z) = e^{-\lambda t} (1 - \alpha z)^{-t}$$
, where $-1 \le z\alpha < 1$

Hence, or otherwise, find the probability distribution of X(t) and its mean and variance.

[Note that
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$
 for $-1 < x \le 1$.]

Answer

X(t) is a Compound Poisson Process.

The p.g.f. of each Y_i is

$$A(z) = \sum_{y=1}^{\infty} \frac{\alpha^y z^y}{\lambda y} = -\frac{1}{\lambda} \ln(1 - \alpha z)$$

By the theory of compound Poisson Processes X(t) has p.g.f.

$$G(z) = e^{-\lambda t} \exp(\lambda t A(z))$$

= $e^{-\lambda t} \exp(-t \ln(1 - \alpha z))$
= $e^{-\lambda t} (1 - \alpha z)^{-t}$

The probability distribution of X(t) is given by

$$P(X(t)) = j$$
) = coefficient of z^{j} in the p.g.f.
= $e^{-\lambda t} \begin{pmatrix} t+j-1 \\ j \end{pmatrix} \alpha^{j}$
= $e^{-\lambda t} \begin{pmatrix} t+j-1 \\ j \end{pmatrix} (1-e^{-\lambda})^{j}$

$$\begin{split} E(X) &= \left(\frac{\partial G}{\partial z}\right)_{z=1} = t(e^{\lambda} - 1) \quad (\alpha = 1 - e^{-\lambda}) \\ E(X(X - 1)) &= \left(\frac{\partial^2 G}{\partial z^2}\right)_{z=1} = t(t+1)(e^{\lambda} - 1)^2 \\ VarX &= E(X(X - 1)) + E(X) - (E(X))^2 = te^{\lambda}(e^{\lambda} - 1) \end{split}$$