Question

An electrician services m machines which experiences random breakdowns. If a machine is working at time t then the probability that it will require attention in the time interval $(t, t+\delta t]$ is $\lambda \delta t+o(\delta t)$ for each machine. The machines work independently and the electrician can only service one machine at a time. The service times are independent random variables with cumulative distribution function $1-e^{-\mu x}$ (for $x \geq 0$). Let $X(t)$ denote the number of machines working at time t.
Show that the limiting probabilities

$$
P_{j}=\lim _{t \rightarrow \infty} p\{X(t)=j\} \quad j=0,1,2, \ldots, m
$$

satisfy the equations

$$
j \lambda p_{j}-\mu p_{j-1}=(j+1) \lambda p_{j+1}-\mu p_{j} \quad(j=0,1,2, \ldots, m-1)
$$

where $p_{-1}=0$ and $m \lambda p_{m}=\mu p_{m-1}$.
By deducing that $j \lambda p_{j}-\mu p_{j-1}=0$, or otherwise, show that in the long run the expected number of machines working simultaneously is $\left(1-p_{m}\right) \frac{\mu}{\lambda}$.

Answer

Service times have c.d.f. $1-e^{-\mu x}$ i.e. negative exponential. So they are competed according to a Poisson process with rate μ.
When $X(t)=j$ the change in $(t, t+\delta t]$ is

$$
\begin{array}{rll}
+1 & \text { with probability } & \mu \delta t+o(\delta t) \\
-1 & \text { with probability } & \lambda j \delta t+o(\delta t) \\
0 & \text { with probability } & 1-(\mu+\lambda j) \delta t+o(\delta t)
\end{array}
$$

When $X(t)=0$ the change in $(t, t+\delta t]$ is

$$
\begin{array}{rll}
+1 & \text { with probability } & \mu \delta t+o(\delta t) \\
0 & \text { with probability } & 1-\mu \delta t+o(\delta t)
\end{array}
$$

When $X(t)=m$ the change in $(t, t+\delta t]$ is

$$
\begin{array}{rll}
-1 & \text { with probability } & \lambda m \delta t+o(\delta t) \\
0 & \text { with probability } & 1-\lambda m \delta t+o(\delta t)
\end{array}
$$

$$
\begin{aligned}
P(X(t+\delta t)=j) & =P(X(t+\delta t)=j \mid X(t)=j-1) P(X(t)=j-1) \\
& +P(X(t+\delta t)=j \mid X(t)=j+1) P(X(t)=j+1) \\
& +P(X(t+\delta t)=j \mid X(t)=j) P(X(t)=j) \\
p_{j}(t+\delta t) & =(\mu \delta t+o(\delta t)) p_{j-1}(t) \\
& +(\lambda(j+1)+o(\delta t)) p_{j+1}(t) \\
& +(1-(\lambda j+\mu) \delta t+o(\delta t)) p_{j}(t) \quad(0<j<m)
\end{aligned}
$$

giving

$$
p_{j}^{\prime}(t)=\mu p_{j-1}(t)+\lambda(j+1) p_{j+1}(t)-(\lambda j+\mu) p_{j}(t)
$$

Similarly

$$
\begin{aligned}
p_{0}^{\prime}(t) & =-\mu p_{0}(t)+\lambda p_{1}(t) \\
p_{m}^{\prime}(t) & =-\lambda m p_{m}(t)+\mu p_{m-1}(t)
\end{aligned}
$$

The equilibrium equations are therefore:

$$
\begin{aligned}
& 0=-\mu p_{0}+\lambda p_{1} \\
& 0=-\lambda m p_{m}+\mu p_{m-1} \\
& 0=\mu p_{j-1}+\lambda(j+1) p_{j+1}-(\lambda j+\mu) p_{j} \quad(0<j<m)
\end{aligned}
$$

So $j \lambda p_{j}-\mu p_{j-1}=(j+1) \lambda p_{j+1}-\mu p_{j} \quad(0<j<m)$
Since $1 \cdot \lambda p_{1}-\mu p_{0}=0$ it follows by induction that $j \lambda p_{j}-\mu p_{j-1}=0$ for $0<j<m$. Also $m \lambda p_{m}-\mu p_{m-1}=0$.
The expected number of machines working is

$$
\sum_{j=1}^{m} j p_{j}=\frac{\mu}{\lambda} \sum_{j=1}^{m} p_{j-1}=\frac{\mu}{\lambda}\left(1-p_{m}\right)
$$

