Question

In a simple random walk on $0,1,2, \ldots, a$ there are probabilities p, q and $1-p-q$ of a step of $1,-1$ and 0 respectively . There is a reflecting barrier at 0 defined by:

$$
\begin{gathered}
P\left\{X_{n}=0 \mid X_{n-1}=0\right\}=1-p, \\
P\left\{X_{n}=1 \mid X_{n-1}=0\right\}=p,
\end{gathered}
$$

and an absorbing barrier at a.
Derive a difference equation for the expected number, E_{z}, of steps from a start at $z \quad(0 \leq z \leq a)$ until absorption occurs. Find E_{z} for the two cases $p=q$ and $p \neq q$.
What is the difference in the expected duration between walks starting at 0 and starting at 1 ?

Answer

For $0<z<a$,
$E_{z}=p\left(1+E_{z+1}\right)+q\left(1+E_{z-1}\right)+(1-p-q)\left(1+E_{z}\right)$
$\Rightarrow p E_{z+1}-(p+q) E_{z}+q E_{z-1}=-1$
The auxiliary equation is $p \lambda^{2}-(p+q) \lambda+q=0 \Rightarrow \lambda=1, \quad \frac{q}{p}$
For $p \neq q$ a particular solution is $E_{z}=c z$ and substituting in the difference equation gives $c=\frac{1}{q-p}$
So the general solution is

$$
E_{z}=A+B\left(\frac{q}{p}\right)^{z}+\frac{z}{q-p} \quad 0 \leq z \leq a
$$

Boundary conditions:
$E_{a}=0$ so $0=A+B\left(\frac{q}{p}\right)^{a}+\frac{a}{q-p}$
$E_{0}=p\left(1+E_{1}\right)+(1-p)\left(1+E_{0}\right) \Rightarrow 1+p E_{1}-p E_{0}=0$
So $1+p\left(A+B\left(\frac{q}{p}\right) \frac{1}{q-p}\right)-p(a+B)=0$
Solving the two equations for A and B gives

$$
E_{z}=\underbrace{\frac{q}{(q-p)^{2}}\left(\frac{q}{p}\right)^{a}-\frac{a}{q-p}}_{A} \underbrace{-\frac{q}{(q-p)^{2}}}_{B}\left(\frac{q}{p}\right)^{z}+\frac{z}{q-p}
$$

For $p=q$ the auxiliary equation has equal roots $\lambda=1$, so the general solution is $A+B z$. A particular solution will be $c z^{2}$, and substituting gives $c=-\frac{1}{2 p}$

So $E_{z}=A+B z-\frac{z^{2}}{2 p}$
The boundary conditions are as above, and give
$(z=a) \quad 0=A+B a-\frac{a^{2}}{2 p}$
$(z=0) \quad 1=p\left(A+B-\frac{1}{2 p}\right)-p \cdot A=0$
So $E_{z}=\frac{a^{2}+a}{2 p}-\frac{z}{2 p}-\frac{z^{2}}{2 p}$
from which $E_{0}-E_{1}=\frac{1}{p}$
Alternatively this equation is simply a rearrangement of the boundary condition at $z=0$

