Question

Let $f(x, y)$ satisfy

$$
\left\{\begin{array}{cl}
(x+1) \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}=x & \text { for } \mathrm{x}>0, \mathrm{y}>0 \\
f(0, y)=q(y), & f(x, 0)=r(x)
\end{array}\right.
$$

Show that the Laplace transform in $y, \bar{f}(x)$ say, satisfies

$$
\left\{\begin{aligned}
(x+1) \frac{d \bar{f}}{d x}+p \bar{f} & =p^{-1} x+r(x) \\
\bar{f}(0) & =\bar{q}
\end{aligned}\right.
$$

Solve this for \bar{f} in the special case

$$
q(y)=y, r(x)=0
$$

Use the inversion integral to calculate $f(x, y)$.

Answer

Transform the equation and boundary conditions

$$
\int_{0}^{\infty} d y(x+1) \frac{\partial f}{\partial x} e^{-p y}+\frac{[}{-}^{\infty} \frac{\partial f}{\partial y} e^{-p y} d y=\int_{0}^{\infty} d y x e-p y
$$

becomes, by standard methods:

$$
(x+1) \frac{\partial \bar{f}}{\partial x}+p \bar{f}-\underbrace{f(x, 0)}_{r(x)}=\frac{x}{p}
$$

Also the boundary conditions:

$$
\int_{0}^{\infty} f(0, y) e^{-p y} d y=\int_{0}^{\infty} q(y) e^{-p y} d y=\bar{q}=\bar{f}(0)
$$

as required.
Must now solve this ODE and transformed boundary condition. ODE is linear and has an integrating factor: special case given is:

$$
(x+1) \frac{\partial \bar{f}}{\partial x}+p \bar{f}=\frac{x}{p}, \quad \bar{f}(0)=\int_{0}^{\infty} y e^{-p} y d y=\frac{1}{p^{2}}
$$

Integrating factor $=e^{\int \frac{p}{x+1}} d x=e^{p \ln (1+x)}=(1+x)^{p}$

$$
\begin{aligned}
& \Rightarrow \frac{\partial \bar{f}}{\partial x}(1+x)^{p}+p(1+x)^{p-1} \bar{f}=\frac{x}{(1+x) p}(1+x)^{p} \\
& \Rightarrow \quad \frac{\partial}{\partial x}\left[(1+x)^{p} \bar{f}\right]=\frac{x}{(1+x) p}(1+x)^{p} \\
& \Rightarrow \quad(1+x)^{p} \bar{f}=\int \frac{x}{p}(1+x)^{p-1} d x+c \\
& =\underbrace{\frac{x(1+x)^{p}}{p^{2}}-\frac{(1+x) p+1}{p^{2}(p+1)}}+c \\
& \text { by integration by parts } \\
& \Rightarrow \quad \bar{f}=\frac{x}{p^{2}}-\frac{(1+x)}{p^{2}(p+1)}+\frac{c}{(1+x)^{p}} \\
& \bar{f}(0)=\frac{1}{p^{2}} \\
& \Rightarrow \quad \frac{1}{p^{2}}=-\frac{1}{p^{2}(p+1)}+c \\
& \Rightarrow c=\frac{1}{p^{2}}+\frac{1}{p^{2}(p+1)} \\
& \Rightarrow \bar{f}=\frac{x}{p^{2}}-\frac{(1+x)}{p^{2}(p+1)}+\frac{(p+2)}{(p+1) p^{2}} \frac{1}{(1+x)^{p}} \\
& =\frac{x p+x-1-x}{\left.p^{(} p+1\right)}+\left[\frac{2}{p^{2}}-\frac{1}{p(p+1)}\right] \frac{1}{(1+x)^{p}} \\
& =\frac{x p+p-1-p}{p^{2}(p+1)}+\left[\frac{2}{p^{2}}-\frac{1}{p(p+1)}\right] \frac{1}{(1+x)^{p}} \\
& =\frac{(x+1)}{p(p+1)}-\frac{1}{p^{2}}+\left[\frac{2}{p^{2}}-\frac{1}{p(p+1)}\right] \frac{1}{(1+x)^{p}}
\end{aligned}
$$

So inversion integral is

$$
=\frac{1}{2 \pi i} \int d p\left\{\frac{(x+1)}{p(p+1)}-\frac{1}{p^{2}}+\left[\frac{2}{p^{2}}-\frac{1}{p(p+1)}\right] \frac{1}{(1+x)^{p}}\right\} e^{p y}
$$

(1):

$$
\begin{array}{r}
\frac{1}{2 \pi i} \int d p \frac{(x+1)}{p(p+1)} e^{p y}=(x+1)\left[1-e^{-y}\right] \\
p \stackrel{\uparrow}{=} 0 p=-1
\end{array}
$$

complete to left since $y>0$. Simple poles at $p=0,-1$.
Semicircular contribution $\rightarrow 0$
(2):
$\frac{1}{2 \pi i} \int d p e^{p y}-p^{2}$ complete to left since $y>0$. Double pole at $p=0$. Semicircular contribution $\rightarrow 0$
$=-\lim _{p \rightarrow 0}\left\{\frac{1}{1!} \frac{\partial}{\partial p} e^{p y}\right\}$
$=-\lim _{p \rightarrow 0}\left(y e^{p y}\right)$
$=-y$
(3):
must decide whether $y=\ln (1+x)>$ or <0. This affects which side you complete on:

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int d p\left(\frac{2}{p^{2}}-\frac{1}{p(p+1)}\right) \frac{e^{p y}}{(1+x)^{p}} \\
& =\frac{1}{2 \pi i} \int d p\left(\frac{2}{p^{2}}-\frac{1}{p(p+1)}\right) e^{p(y-\log (1+x))}
\end{aligned}
$$

$y>\log (1+x)$: complete to left enclose poles at 0 and -1 . Semicircular contribution vanishes
(3):

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int d p\left(\frac{2}{p^{2}}-\frac{1}{p(p+1)}\right) e^{p(y-\log (1+x))} \\
& =\frac{1}{2 \pi i} \int d p \frac{2}{p^{2}} e^{p}(y-\log (1+x))-\frac{1}{2 \pi i} \int \frac{d p e^{p}(y-\log (1+x))}{p(p+1)} \\
& \begin{array}{c}
\text { double pole at } p=0
\end{array} \\
& \begin{aligned}
& 2 \text { simple poles at } p=0 \\
& \text { and } p=-1
\end{aligned}
\end{aligned}
$$

$=2(y-\log (1+x))-1+e^{-y}(1+x)$
$y<\log (1+x):$ complete to the right. No poles enclosed. Semicircular contribution vanishes.

Adding (1), (2) and (3) we get:

$$
f(x, y)=\left\{\begin{array}{cc}
(x+y)-2 \log (1+x) & y>\log (1+x) \\
(x+1)\left(1-e^{-y}\right)-y & y<\log (1+x)
\end{array}\right.
$$

Note that if you go back and check, $y=\log (1+x)+$ const are the characteristics of the equation. Hence you expect some funny behaviour across them. Check that $f(x, y)$ is continuous across $y=\log (1+x)$ by substituting $y=\log (1+x)$ into both expressions for $f(x, y)$ and seeing that they both reduce to

$$
f(x, \log (1+x))=x-\log (1+x)
$$

