Question
Let f(z,y) satisfy

{ (:L'—i—l)%—i—g—i:x forx >0, y>0
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Show that the Laplace transform in y, f(x) say, satisfies

Y F0) = g

Solve this for f in the special case

{(x+1)jf —tp? = plz+r(x)

q(y) =y, r(z) =0.
Use the inversion integral to calculate f(x,y).

Answer
Transform the equation and boundary conditions
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becomes, by standard methods:
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Also the boundary conditions:
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as required.

Must now solve this ODE and transformed boundary condition.

linear and has an integrating factor: special case given is:
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Integrating factor = eJ =1 dg = ePl(1+2) = (1 4 z)p

ODE is
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So inversion integral is

f(xaly) @i 1 T2 X .
b T + 1 e ePY
2 /dp {p(p+ D [pQ p(p+ 1)1 (Hx)p}

| m © (3)
(1):

1 (x+1)
— [ dp ——e =(x+1)]1 — ¥
27m/ pp(p—i— 1) ( ) |
* T T
p=0p=-1
complete to left since y > 0. Simple poles at p =0, —1.
Semicircular contribution — 0
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must decide whether y = In(1 4+ 2) > or < 0. This affects which side you
complete on:
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y > log(1 + x): complete to left enclose poles at 0 and —1. Semicircular
contribution vanishes
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/dp e? —p? complete to left since y > 0. Double pole at p = 0. Semi-
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y < log(1 + x): complete to the right. No poles enclosed. Semicircular con-
tribution vanishes.




Adding (1), (2) and (3) we get:

flx,y) = (r+y)—2log(l+x) y>log(l+x)
| (z+1)(1—e¥)—y y<log(l+az)

Note that if you go back and check, y = log(1 + x) + const are the char-
acteristics of the equation. Hence you expect some funny behaviour across
them. Check that f(x,y) is continuous across y = log(1 + x) by substituting
y = log(1 + x) into both expressions for f(z,y) and seeing that they both
reduce to

f(z, log(1+z)) =z —log(1 + x)



