
Question

Let f(x, y) satisfy







(x+ 1)
∂f

∂x
+
∂f

∂y
= x for x > 0, y > 0

f(0, y) = q(y), f(x, 0) = r(x)

Show that the Laplace transform in y, f(x) say, satisfies







(x+ 1)
df

dx
+ pf = p−1x+ r(x)

f(0) = q

Solve this for f in the special case

q(y) = y, r(x) = 0.

Use the inversion integral to calculate f(x, y).

Answer

Transform the equation and boundary conditions

∫ ∞

0
dy (x+ 1)

∂f

∂x
e−py +

[

−

∞
∂f

∂y
e−pydy =

∫ ∞

0
dy xe−py

becomes, by standard methods:

(x+ 1)
∂f̄

∂x
+ pf̄ − f(x, 0)

︸ ︷︷ ︸
=

x

p

r(x)
Also the boundary conditions:

∫ ∞

0
f(0, y)e−pydy =

∫ ∞

0
q(y)e−pydy = q̄ = f̄(0)

as required.
Must now solve this ODE and transformed boundary condition. ODE is
linear and has an integrating factor: special case given is:

(x+ 1)
∂f̄

∂x
+ pf̄ =

x

p
, f̄(0) =

∫ ∞

0
ye−py dy =

1

p2

Integrating factor = e
∫

p

x+1 dx = ep ln(1+x) = (1 + x)p
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⇒
∂f̄

∂x
(1 + x)p + p(1 + x)p−1f̄ =

x

(1 + x)p
(1 + x)p

⇒
∂

∂x
[(1 + x)pf̄ ] =

x

(1 + x)p
(1 + x)p

⇒ (1 + x)pf̄ =
∫
x

p
(1 + x)p−1 dx + c

=
x(1 + x)p

p2
−

(1 + x)p+ 1

p2(p+ 1)
︸ ︷︷ ︸

+c

by integration by parts

⇒ f̄ =
x

p2
−

(1 + x)

p2(p+ 1)
+

c

(1 + x)p

f̄(0) =
1

p2

⇒
1

p2
= −

1

p2(p+ 1)
+ c

⇒ c =
1

p2
+

1

p2(p+ 1)

⇒ f̄ =
x

p2
−

(1 + x)

p2(p+ 1)
+

(p+ 2)

(p+ 1)p2

1

(1 + x)p

=
xp+ x− 1− x

p(p+ 1)
+

[

2

p2
−

1

p(p+ 1)

]

1

(1 + x)p

=
xp+ p− 1− p

p2(p+ 1)
+

[

2

p2
−

1

p(p+ 1)

]

1

(1 + x)p

=
(x+ 1)

p(p+ 1)
−

1

p2
+

[

2

p2
−

1

p(p+ 1)

]

1

(1 + x)p

So inversion integral is
f(x, y)

=
1

2πi

∫

dp

{

(x+ 1)

p(p+ 1)
−

1

p2
+

[

2

p2
−

1

p(p+ 1)

]

1

(1 + x)p

}

epy

6 (1) (2) (3)
(1):
1

2πi

∫

dp
(x+ 1)

p(p+ 1)
epy = (x+ 1)[1 − e−y]

6

↑

p = 0
↑

p = −1
complete to left since y > 0. Simple poles at p = 0, −1.
Semicircular contribution → 0
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(2):
1

2πi

∫

dp epy
−p2 complete to left since y > 0. Double pole at p = 0. Semi-

circular contribution → 0

= − limp→0

{

1

1!

∂

∂p
epy

}

= − limp→0(ye
py)

= −y
(3):
must decide whether y = ln(1 + x) > or < 0. This affects which side you
complete on:
1

2πi

∫

dp

(

2

p2
−

1

p(p+ 1)

)

epy

(1 + x)p

6

=
1

2πi

∫

dp

(

2

p2
−

1

p(p+ 1)

)

ep(y−log(1+x))

6
y > log(1 + x): complete to left enclose poles at 0 and −1. Semicircular
contribution vanishes
(3):
1

2πi

∫

dp

(

2

p2
−

1

p(p+ 1)

)

ep(y−log(1+x))

6

=
1

2πi

∫

dp
2

p2
ep(y − log(1 + x))−

1

2πi

∫
dp ep(y − log(1 + x))

p(p+ 1)

6 double pole at p = 0 62 simple poles at p = 0
and p = −1

= 2(y − log(1 + x))− 1 + e−y(1 + x)
y < log(1 + x): complete to the right. No poles enclosed. Semicircular con-
tribution vanishes.
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Adding (1), (2) and (3) we get:

f(x, y) =

{

(x+ y)− 2 log(1 + x) y > log(1 + x)
(x+ 1)(1− e−y)− y y < log(1 + x)

Note that if you go back and check, y = log(1 + x) + const are the char-
acteristics of the equation. Hence you expect some funny behaviour across
them. Check that f(x, y) is continuous across y = log(1+ x) by substituting
y = log(1 + x) into both expressions for f(x, y) and seeing that they both
reduce to

f(x, log(1 + x)) = x− log(1 + x)
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