QUESTION

For each integer, $n \ge 0$, define $h_n = 2^{2^n} + 1$.

- (i) Evaluate $h_0, h(1), h_2, h_3$.
- (ii) Show that $\mathrm{HCF}(h_n,h_{n+t})=1$ for all $n\geq 0$ and all $t\geq 1$. (Hint: Consider $h_{n+t}-2$.)
- (iii) Use (ii) to give a proof that there exist infinitely many prime numbers.

(Hint: you may assume that every positive integer has a unique factorisation into prime powers.) ANSWER

(i) We have

$$h_0 = 2^{2^0} + 1 = 2^1 + 1 = 3$$

 $h_1 = 2^{2^1} + 1 = 2^2 + 1 = 5$
 $h_2 = 2^{2^2} + 1 = 2^4 + 1 = 17$
 $h_3 = 2^{2^3} + 1 = 2^8 + 1 = 257$

(ii) We have

$$h_n + 1 - 2 = 2^{2^{n+1}} + 1 - 2 = 2^{2^{n}2^1} - 2 = (2^{2^n})^{2^t} - 1 = (h_n - 1)^{2^t} - 1$$

which is divisible by h_n , by the binomial theorem. Therefore any common factor of h_n and h_{n+1} must divide 2. Since h_n is odd $HCF(h_n, h_{n+1}) = 2$ is impossible.

(iii) Suppose that there are only finitely many distinct primes, $p_1, p_2, \dots p_k$. Let P_n denote the set of primes which appear to a strictly positive exponent in the prime power factorisation of any one of h_0, h_1, \dots, h_n . By (ii) no element of P_m can appear in the prime factorisation of h_{m+1} so that $|P_n| \geq n$ which is impossible for n > k.