QUESTION

Let x be a primitive root modulo p where p is an odd prime and $1 \leq x \leq p-1$.
(i) Explain why the two sets of congruence classes $\bmod (p)$,

$$
\left\{[1],[x],\left[x^{2}\right], \ldots,\left[x^{p-2}\right]\right\} \text { and }\{[1],[2], \ldots,[p-1]\}
$$

are equal.
(ii) Using (i) or otherwise, show that if $p-1$ divides n then

$$
1^{n}+2^{n}+\ldots+(p-1)^{n} \equiv-1 \bmod (p)
$$

(iii) Using (i) or otherwise, show that if $p-1$ does not divide n then

$$
1^{n}+2^{n}+\ldots+(p-1)^{n} \equiv \bmod (p)
$$

(Hint: In this case $n=q(p-1)+r$ with $1 \leq r \leq p-2$.)

ANSWER

(i) It suffices to show that the $\left[x^{i}\right]=[x]^{i}$ are distinct for $1 \leq i \leq p-1$. If $x^{i} \equiv x^{j} \bmod (p)$ with $1 \leq i<j \leq p-1$ then $p \mid x^{i}\left(1-x^{j-i}\right)$ and so $p \mid\left(1-x^{k-i}\right)$, since $\operatorname{HCF}(p, x)=1$. Hence $x^{j-i} \equiv 1 \bmod (p)$. This implies that $p-1=\operatorname{order}(x) \leq j-i<p-1$, which is a contradiction.
(ii) By (i), the congruence class mod $(p),\left[1^{n}+2^{n}+\ldots+(p-1)^{n}\right]$, satisfies

$$
\begin{aligned}
{\left[1^{n}+2^{n}+\ldots+(p-1)^{n}\right] } & =[1]^{n}+[2]^{n}+\ldots+[(p-1)]^{n} \\
& =[1]^{n}+[x]^{n}+\left[x^{2}\right]^{n}+\ldots+\left[x^{p-2}\right]^{n}
\end{aligned}
$$

If $p-1$ divides n then $\left[x^{i}\right]^{n}=\left[x^{i n}\right]=[1]$ since $x^{p-1} \equiv 1 \bmod (P)$ so that in this case

$$
[1]^{n}+[x]^{n}+\left[x^{2}\right]^{n}+\ldots+\left[x^{p-1}\right]^{n}=(p-1)[1]=[p-1]=[-1]
$$

as required.
(iii) When $p-1$ does not divide n we must have $n=q(p-1)+r$ for some q and some $1 \leq r \leq p-1$. Hence $\left[x^{n}\right]=\left[x^{r}\right]$ so that it will suffice to show that

$$
[1]^{r}+[x]^{r}+\left[x^{2}\right]^{r}+\ldots+\left[x^{p-2}\right]^{n}=\left[1+x^{r}+x^{2 r}+\ldots+x^{(p-2) r}\right]=[0]
$$

Since x^{r} is not congruent to $1 \bmod (p)$ we must have $\operatorname{HCF}\left(x^{r}-1, p\right)=1$. Therefore $\left[x^{r}-1\right][y]=[0]$ if and only if $[y]=[0]$. However,

$$
\begin{aligned}
& {\left[x^{r}-1\right]\left[1+x^{r}+x^{2 r}+\ldots+x^{(p-1) r}\right] } \\
= & {\left[x^{r}+x^{2 r}+\ldots+x^{(p-1) r}+x^{(p-1) r}-1-x^{r}-x^{2 r}-\ldots-x^{(p-10 r}\right] } \\
= & {\left[x^{(p-1) r}-1\right] } \\
= & {\left[x^{p-1}\right]^{r}-[1] } \\
= & {[1]-[1] } \\
= & {[0] }
\end{aligned}
$$

as required.

