Question

Find the particular integral for the differential equation

$$\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + 2x = 1 + 2t + t^2$$

Answer

There are many Particular Integrals, but we use the method of undetermined coefficients.

Let

$$x^* = a_0 + a_1 t + a_2 t^2$$

$$\frac{dx^*}{dt} = a_1 + 2a_2 t$$

$$\frac{d^2x^*}{dt^2} = 2a_2$$

We try to fix a_0 , a_1 , a_2 Substitute into equation

$$\frac{d^2x^*}{dt^2} + 3\frac{dx^*}{dt} + 2x = 1 + 2t + t^2$$

$$= 2a_2 + 3(a_1 + 2a_2t) + 2(a_0 + a_1t + a_2t^2)$$

$$= [2a_2 + 3a_1 + 2a_0] + [6a_2 + 2a_1]t + 2a_2t^2$$
(B)

Comparing coefficients in (A) and (B)

$$2a_2 + 3a_1 + 2a_0 = 1$$

 $6a_2 + 2a_1 = 2$
 $2a_2 = 1$

Solving gives $a_2 = \frac{1}{2}$, $a_1 = -\frac{1}{2}$ and $a_0 = \frac{3}{4}$