Question

Find the general solution of the differential equation:

$$
4 \frac{d^{2} x}{d t^{2}}-4 \frac{d x}{d t}+x=e^{-t}
$$

Answer

$$
4 \frac{d^{2} x}{d t^{2}}-4 \frac{d x}{d t}+x=e^{-t}
$$

Complementary Function:
auxiliary equation $4 m^{2}-4 m+1=0 \Rightarrow(2 m-1)^{2}=0$
TWO solutions with $m=\frac{1}{2}$
Hence the Complementary Function is $x_{c}=(A t+B) e^{\frac{1}{2} t}$
Particular integral method of undetermined coefficients

$$
\begin{aligned}
\text { Let } x^{*} & =C e^{-t} \\
4 \frac{d^{2} x^{*}}{d t^{2}}-4 \frac{d x^{*}}{d t}+x & =C e^{-t}[4+4+1] \equiv e^{-t} \\
\text { Hence } C & =\frac{1}{9}
\end{aligned}
$$

Hence the general solution is now

$$
x=(A t+B) e^{\frac{1}{2} t}+\frac{1}{9} e^{-t}
$$

