
QUESTION There are certain matrices (in particular the Jacobian, Hes-
sian and Wronksian) the elements of which consist of functions and/or their
derivatives.
Let u = (u1, u2, . . . , um) and x = (x1, x2, . . . , xn), where each of the coordi-
nate functions ur is a function of all the variables xs. The Jacobian matrix

D has (D)rs = ∂ur/∂xs.

The Jacobian (or Jacobian determinant) is the determinant of this matrix.
For example, if m = n = 2 then the Jacobian is denoted by ∂(u1, u2)/∂(x1, x2)
and in the case when

u1 = x1 + x2,
u2 = x1x
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The Hessian matrix H is defined when m = 1 and has (H)rs = ∂2u/∂xr∂xs;
the Hessian (or Hessian determinant) is detH. For example, if u = x2y2z2

then
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[For everyday functions, the mixed partial derivatives are equal, in which
case H is a symmetric matrix.]

(a) Find the Jacobian matrix and the Jacobian for the following set of func-
tions:

u = x2 + y2 + z2,
v = xy + yz + zx,
w = x + y + z.

(b) Find the Hessian matrix and Hessian of u = ax3 + 3bx2y + 3cxy2 + dy3.
ANSWER
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The determinant=0. This can be proved in various ways, e.g.
1

2
row 1+row 2=(x + y + z)row 3.
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(b)

H =

[
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=

[

6ax + 6by 6bx + 6cy
6bx + 6cy 6cx + 6dy

]

detH = 36{(ax + by)(cx + dy)− (bx + cy)2}

= 36{(ac− b2)x2 + (ad− bc)xy + (bd− c2)y2}
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