QUESTION There are certain matrices (in particular the Jacobian, Hessian and Wronksian) the elements of which consist of functions and/or their derivatives.
Let $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ and $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where each of the coordinate functions u_{r} is a function of all the variables x_{s}. The Jacobian matrix D has $(D)_{r s}=\partial u_{r} / \partial x_{s}$.
The Jacobian (or Jacobian determinant) is the determinant of this matrix. For example, if $m=n=2$ then the Jacobian is denoted by $\partial\left(u_{1}, u_{2}\right) / \partial\left(x_{1}, x_{2}\right)$ and in the case when

$$
\begin{aligned}
& u_{1}=x_{1}+x_{2}, \\
& u_{2}=x_{1} x_{2}^{2},
\end{aligned}
$$

then

$$
\frac{\partial\left(u_{1}, u_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}=\left|\begin{array}{ll}
\partial u_{1} / \partial x_{1} & \partial u_{1} / \partial x_{2} \\
\partial u_{2} / \partial x_{1} & \partial u_{2} / \partial x_{2}
\end{array}\right|=\left|\begin{array}{cc}
1 & 1 \\
x_{2}^{2} & 2 x_{1} x_{2}
\end{array}\right|=2 x_{1} x_{2}-x_{2}^{2}
$$

The Hessian matrix H is defined when $m=1$ and has $(H)_{r s}=\partial^{2} u / \partial x_{r} \partial x_{s}$; the Hessian (or Hessian determinant) is $\operatorname{det} H$. For example, if $u=x^{2} y^{2} z^{2}$ then

$$
H=\left[\begin{array}{ccc}
\partial^{2} u / \partial x^{2} & \partial^{2} u / \partial x \partial y & \partial^{2} u / \partial x \partial z \\
\partial^{2} u / \partial y \partial x & \partial^{2} u / \partial y^{2} & \partial^{2} u / \partial y \partial z \\
\partial^{2} u / \partial z \partial x & \partial^{2} u / \partial z \partial y & \partial^{2} u / \partial z^{2}
\end{array}\right]=\left[\begin{array}{ccc}
2 y^{2} z^{2} & 4 x y z^{2} & 4 x y^{2} z \\
4 x y z^{2} & 2 x^{2} z^{2} & 4 x^{2} y z \\
4 x y^{2} z & 4 x^{2} y z & 2 x^{2} y^{2}
\end{array}\right]
$$

[For everyday functions, the mixed partial derivatives are equal, in which case H is a symmetric matrix.]
(a) Find the Jacobian matrix and the Jacobian for the following set of functions:

$$
\begin{aligned}
& u=x^{2}+y^{2}+z^{2}, \\
& v=x y+y z+z x, \\
& w=x+y+z
\end{aligned}
$$

(b) Find the Hessian matrix and Hessian of $u=a x^{3}+3 b x^{2} y+3 c x y^{2}+d y^{3}$. ANSWER
(a)

$$
J=\left[\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right]=\left[\begin{array}{ccc}
2 x & 2 y & 2 z \\
y+z & x+z & x+y \\
1 & 1 & 1
\end{array}\right]
$$

The determinant $=0$. This can be proved in various ways, e.g.
$\frac{1}{2}$ row $1+$ row $2=(x+y+z)$ row 3 .
(b)

$$
\begin{aligned}
H & =\left[\begin{array}{cc}
\frac{\partial^{2} u}{\partial x^{2}} & \frac{\partial^{2} u}{\partial x \partial u} \\
\frac{\partial^{2} u}{\partial y \partial x} & \frac{\partial^{2} u}{\partial y^{2}}
\end{array}\right]=\left[\begin{array}{cc}
6 a x+6 b y & 6 b x+6 c y \\
6 b x+6 c y & 6 c x+6 d y
\end{array}\right] \\
\operatorname{det} H & =36\left\{(a x+b y)(c x+d y)-(b x+c y)^{2}\right\} \\
& =36\left\{\left(a c-b^{2}\right) x^{2}+(a d-b c) x y+\left(b d-c^{2}\right) y^{2}\right\}
\end{aligned}
$$

