Question

A surface $z=u(x, y)$ passes through a given closed curve C in x, y, z space whose projection on the x, y plane is Γ. Show that the area of that part of the surface enclosed by C is

$$
A=\iint_{S}\left(1+u_{x}^{2}+u_{y}^{2}\right)^{\frac{1}{2}} d x d y
$$

where S is the area in the plane bounded by Γ.
Show that when this area is a minimum, u satisfies the partial differential equation

$$
\left(1+u_{y}^{2}\right) u_{x x}-2 u_{x} u_{y} u_{x y}+\left(1+u_{x}^{2}\right) u_{y y}=0 .
$$

(This is known as Plateau's problem).

Answer

For a surface $f(x, y, z)=0$ a normal to the surface is given by $\underline{\nabla} f$, i.e., $\left(f_{x}, f_{y}, f_{z}\right)$
Hence for $u(x, y)-z=0$ a normal vector is $\left(u_{x}, u_{y},-1\right)$ and a unit normal is $\left(1+u_{x}^{2}+u_{y}^{2}\right)^{-\frac{1}{2}}\left(u_{x}, u_{y},-1\right)$.
it follows that is $d s$ is an elements of area of the surface, then by projection onto the $x-y$ plane,

$$
\left(1+u_{x}^{2}+u_{y}^{2}\right)^{-\frac{1}{2}} d s=d x d y
$$

and so

$$
\int d s=\iint_{S}\left(1+u_{x}^{2}+u_{y}^{2}\right)^{\frac{1}{2}} d x d y
$$

The E-L equation is then
$\frac{\partial F}{\partial u}-\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x}}\right)-\frac{\partial}{\partial y}\left(\frac{\partial F}{\partial u_{y}}\right)=0$ with $F=\left(1+u_{x}^{2}+u_{y}^{2}\right)^{\frac{1}{2}}$.
This gives:

$$
\frac{\partial}{\partial x}\left(\frac{u_{x}}{\left(1+u_{x}^{2}+u_{y}^{2}\right)^{\frac{1}{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{u_{y}}{\left(1+u_{x}^{2}+u_{y}^{2}\right)^{\frac{1}{2}}}\right)=0
$$

which after boring algebra gives the result in the question.

