Question

An appeal fund is launched with a donation of 1,$000 ; t$ weeks later the fund stands at A, and is growing at a rate of $A f(t)$, where

$$
f(t)=\frac{1000 t}{\left(t^{2}+125\right)^{2}}
$$

models the growth and decline of enthusiasm of the sponsors. Write down the differential equation governing the appeal, find A in terms of t, and the time it takes to reach the target of 50,000 . To what value does the fund tend as $t \rightarrow \infty$?

Answer

Rate of growth of $A: \frac{d A}{d t}=\frac{A \cdot 1000 t}{\left(t^{2}+125\right)^{2}}$
when $t=0, A=1000$
This is variables separable
$\int \frac{D A}{A}=\int \frac{1000 t d t}{\left(t^{2}+125\right)^{2}}$
Use a substitution. Set $u=t^{2}+125, d u=2 t+d t$
$\Rightarrow \ln A=\int 1000 \frac{d u}{2} \times \frac{1}{u^{2}}$
$\Rightarrow \ln A=500\left[-\frac{1}{u}\right]+c$ where $u=t^{2}+125$
Thus $\ln A=c-\frac{500}{\left(t^{2}+125\right)}$
When $t=0, A=1000$
$\Rightarrow \ln (1000)=c-\frac{500}{125}$
$\Rightarrow c=\ln (1000)+4$
Thus
$\ln A=\ln (1000)+4-\frac{500}{\left(t^{2}+125\right)}$
$\Rightarrow \ln \left(\frac{A}{1000}\right)=\frac{4 t^{2}+500-500}{\left(t^{2}+125\right)}$
$\Rightarrow \ln \left(\frac{A}{1000}\right)=\frac{4 t^{2}}{\left(t^{2}+125\right)}$
$\Rightarrow A=1000 \exp \left[\frac{4 t^{2}}{t^{2}+125}\right]$

When $A=50,000$ we have
$\frac{50,000}{1000}=\exp \left[\frac{4 t^{2}}{t^{2}+125}\right]$
$\Rightarrow \ln (50)=\frac{4 t^{2}}{t^{2}+125}$
$\Rightarrow t^{2} \ln (50)+125 \ln (50)=4 t^{2}$
$\Rightarrow t^{2}=\frac{125 \ln (50)}{4-\ln (50)}$
or $t=\sqrt{\frac{125 \ln (50)}{4-\ln (50)}}=74.6=75$ weeks
As $t \rightarrow \infty, A \rightarrow 1000 \exp \left[\frac{4 \times \infty}{\infty}\right]=1000 e^{4}=54,598 \approx 54,600$

