Question

An appeal fund is launched with a donation of 1,000; t weeks later the fund stands at A, and is growing at a rate of Af(t), where

$$f(t) = \frac{1000t}{(t^2 + 125)^2}$$

models the growth and decline of enthusiasm of the sponsors. Write down the differential equation governing the appeal, find A in terms of t, and the time it takes to reach the target of 50,000. To what value does the fund tend as $t \to \infty$?

Answer

Rate of growth of A:
$$\frac{dA}{dt} = \frac{A \cdot 1000t}{(t^2 + 125)^2}$$
when $t = 0$, $A = 1000$
This is variables separable

$$\int \frac{DA}{A} = \int \frac{1000t \, dt}{(t^2 + 125)^2}$$
Use a substitution. Set $u = t^2 + 125$, $du = 2t + dt$
 $\Rightarrow \ln A = \int 1000 \frac{du}{2} \times \frac{1}{u^2}$
 $\Rightarrow \ln A = 500 \left[-\frac{1}{u} \right] + c$ where $u = t^2 + 125$
Thus $\ln A = c - \frac{500}{(t^2 + 125)}$
When $t = 0$, $A = 1000$
 $\Rightarrow \ln(1000) = c - \frac{500}{125}$
 $\Rightarrow c = \ln(1000) + 4$
Thus
 $\ln A = \ln(1000) + 4 - \frac{500}{(t^2 + 125)}$
 $\Rightarrow \ln \left(\frac{A}{1000} \right) = \frac{4t^2 + 500 - 500}{(t^2 + 125)}$
 $\Rightarrow \ln \left(\frac{A}{1000} \right) = \frac{4t^2}{(t^2 + 125)}$
 $\Rightarrow A = 1000 \exp \left[\frac{4t^2}{t^2 + 125} \right]$

When
$$A = 50,000$$
 we have

$$\frac{50,000}{1000} = \exp\left[\frac{4t^2}{t^2 + 125}\right]$$

$$\Rightarrow \ln(50) = \frac{4t^2}{t^2 + 125}$$

$$\Rightarrow t^2 \ln(50) + 125 \ln(50) = 4t^2$$

$$\Rightarrow t^2 = \frac{125 \ln(50)}{4 - \ln(50)}$$
or $t = \sqrt{\frac{125 \ln(50)}{4 - \ln(50)}} = 74.6 = 75 \text{ weeks}$
As $t \to \infty$, $A \to 1000 \exp\left[\frac{4 \times \infty}{\infty}\right] = 1000e^4 = 54,598 \approx 54,600$