Question

The rate at which a radioactive substance splits up is given by

$$
\frac{d N}{d t}=-\lambda N
$$

where N is the number of atoms present after t seconds and lambda is a constant. Show that $N=N_{0} e^{-\lambda t}$ where N_{0} is the number of atoms present initially. Find the times in years for half the number of atoms of a given mass of radium to disintegrate if $\lambda=1.37 \times 10^{-11}$ per second.

Answer

$$
\begin{aligned}
\frac{d N}{d t} & =-\lambda N \\
\Rightarrow \int \frac{d N}{N} & =-\lambda \int d t \\
\Rightarrow \quad \ln N & =-\lambda t=c \\
\text { or } N & =e^{-\lambda t+c} \\
N & =e^{c} e^{-\lambda t}
\end{aligned}
$$

so let $e^{c}=N_{0}$
$\frac{N=N_{0} e^{-\lambda t}}{\text { What is } N_{0}}$?
Set $t=0$ to get $N=N_{0} e^{-\lambda \cdot 0}=N_{0}$ i.e., $N=N_{0}$ when $t=0$.
We want the time, T, when $N=\frac{N_{0}}{2}$
i.e.,

$$
\begin{aligned}
& \frac{N_{0}}{2}=N_{0} e^{-\lambda T} \\
& \Rightarrow \quad \frac{1}{2}=e^{-\lambda T} \\
& \ln \left(\frac{1}{2}\right)^{2}=-\lambda T \\
& \text { or } \quad T=-\frac{1}{\lambda} \ln \left(\frac{1}{2}\right) \\
& =+\frac{\ln (2)}{1.37 \times 10^{-11}(\text { persec })} \\
& =50,594,684,712 \mathrm{secs} \\
& =\frac{50,594,684,712}{60 \times 60 \times 24 \times 365} \text { years } \\
& =1604.3 \text { years }
\end{aligned}
$$

