Question

An AC current I, in a circuit with inductance L and resistance R is given by

$$
L \frac{d I}{d t}+R I=E
$$

where L, R and E are constant. Find I, given that $I=0$ when $t=0$.
Answer
$L \frac{d I}{d t}+R I+E$
Could do by variables separable method or
$\frac{d I}{d t}+\frac{R}{L} I=\frac{E}{L}$ cf $\frac{d I}{d t}+P I=Q$
Use $P=\frac{R}{L}, Q=\frac{E}{L}$.
Thus integrating factor
$R=\exp \left(\int P d t\right)=\exp \left(\int \frac{R}{L} d t\right)=e^{\frac{R}{L} t}$
$\Rightarrow e^{\frac{R}{L} t} \frac{d I}{d t}+\frac{R}{L} e^{\frac{R}{L} t} I=\frac{E}{L} e^{\frac{R}{L} t}$
$\Rightarrow \frac{d}{d t}\left(e^{\frac{R}{L} t} I\right)=\frac{E}{L} e^{\frac{R}{L} t}$
$\Rightarrow e^{\frac{R}{L} t} I=\frac{E}{L} e^{\frac{R}{L} t}$
$\Rightarrow e^{\frac{R}{L} t} I=\frac{E}{L} \frac{L}{R} e^{\frac{R}{L} t}+c$
$\Rightarrow I=\frac{E}{R}+c e^{\frac{R}{L} t}$
where c is constant
Now if $I=0$ when $t=0$
$0=\frac{E}{R}+c e^{0} \Rightarrow c=-\frac{E}{R}$
Thus $I=\frac{E}{R}\left(1-e^{\frac{R}{L} t}\right)$

