Question

Find the general solution of the following differential equations
(i) $\cos y-x \sin y \frac{d y}{d x}=0$
(ii) $x y+x \frac{d y}{d x}=e^{x}$

Answer

(i) $\cos y-x \sin y \frac{d y}{d x}=0$

Not variables separable. Not homogeneous (sin's and cos's)
Consider

$$
\left.\left.\frac{d}{d x}\right) x \cos y\right)=\cos y-x \sin y \frac{d y}{d x}
$$

i.e., the LHS is an exact derivative. Thus we can rewrite the equation as
$\frac{d}{d x}(x \cos y)=0$
$\Rightarrow \underline{x \cos y=c}$ where c is constant
(ii) $x y+x \frac{d y}{d x}=e^{x}$

Not variables separable. Not homogeneous (e^{x} 's)
Consider

$$
\frac{d}{d x}(x y)=y+x \frac{d y}{d x}
$$

i.e., the LHS is an exact derivative. Thus we can rewrite the equation as

$$
\begin{aligned}
& \frac{d}{d x}(x y) \\
& \Rightarrow \quad x y=e^{x} \\
& \Rightarrow \quad x y=e^{c}+c
\end{aligned}
$$

