Question

Solve the equations
(i) $\frac{d^{2} y}{d x^{2}}+4 y=8$
(ii) $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+3 y=4 e^{3 x}$
(iii) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=e^{x} \sin x$

Answer

(i) $\frac{d^{2} y}{d x^{2}}+4 y=8$ This is a CF + PI solution.
$\mathrm{CF}: \frac{d^{2} y}{d x^{2}}+4 y=0$,
auxiliary equation $\Rightarrow k^{2}+4=0 \Rightarrow \underline{k= \pm 2 i}$
Hence CF is $y=C \cos 2 x+D \sin 2 x$
PI: $\frac{d^{2} y}{d x^{2}}+4 y=8$
a constant, so from notes try $y=$ const $=\alpha$, say.
So, substituting into the full equation,

$$
0+4 \alpha=8 \Rightarrow \alpha=2
$$

Thus the PI is $y=2$
The solution is $\mathrm{CF}+\mathrm{PI}$

$$
y=C \cos 2 x+D \sin 2 x+2
$$

(ii) $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+3 y=4 e^{3 x}$ This is a CF+PI solution.
$\mathrm{CF}: \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+3 y=0$,
auxiliary equation $k^{2}-4 k+3=0 \Rightarrow(k-1)(k-3)=0 \Rightarrow k=1,3$
Hence CF is $y=A e^{x}+B e^{3 x}$
Now PI: Note that $f(x)=4 e^{3 x}$, but $e^{3 x}$ occurs in the CF, thus we can't try a PI solution $y=L e^{3 x}$, as L will turn out to be zero.

Thus try the solution $y=L x e^{3 x}$

$$
\begin{aligned}
y & =L x e^{3 x} \\
\frac{d y}{d x} & =L e^{3 x}(3 x+1) \\
\frac{d^{2} y}{d x^{2}} & =L e^{3 x}(6+9 x)
\end{aligned}
$$

Thus substitute into the full equation:

$$
\begin{aligned}
& L e^{3 x}(6+9 x)-4 L e^{3 x}(3 x+1)+3 L x e^{3 x}=4 e^{3 x} \\
& \Rightarrow L(5+9 x-12 x-4+3 x)=4 \\
& \Rightarrow L=2
\end{aligned}
$$

Thus the PI is $y=2 x e^{3 x}$
Hence the general solution is $\mathrm{CF}+\mathrm{PI}$

$$
y=A e^{x}+B e^{3 x}+2 x e^{3 x}
$$

(iii) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=e^{x} \sin x$

This is a $\mathrm{CF}+\mathrm{PI}$ solution
$\mathrm{CF}: \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$, auxiliary equation is
$k^{2}+2 k+1=0 \Rightarrow(k+1)^{2}=0 \Rightarrow \underline{k=-1}$
Hence CF is (from notes)

$$
y=(A+B x) e^{-x}
$$

The PI: Here $f(x)=e^{x} \sin x$, so try a solution

$$
\begin{aligned}
y & =e^{x}(L \sin x+M \cos x) \\
\frac{D y}{d x} & =e^{x}([L+M] \cos x+[L-M] \sin x) \\
\frac{d^{2} y}{d x^{2}} & =2 e^{x}(L \cos x-M \sin x)
\end{aligned}
$$

So substituting into the full equation,
$2 e^{x}(L \cos x-M \sin x)+2 e^{x}([L+M] \cos x+[L-M] \sin x)$
$+e^{x}(L \sin x+M \cos x)=e^{x} \sin x$
So compare coeffs of $e^{x} \cos x$
$2 L+2 L+2 M+M=0 \Rightarrow 4 L+3 M=0$
Compare coeffs of $e^{x} \sin x$
$-2 M-2 M+2 L+L=1 \Rightarrow 3 L-4 M=1$
From (1) and (2) must solve simultaneously for L and M.
Take $3 \times(1)-4 \times(2)$

$$
\begin{aligned}
& 12 L+9 M=0 \\
& \frac{12 L-16 M=4}{25 M=-4} \\
& \Rightarrow M=-\frac{4}{25}
\end{aligned}
$$

Hence in (1), $4 L=-3 M=\frac{12}{25} \Rightarrow L=\frac{3}{25}$
Thus PI is

$$
y=\frac{e^{x}}{25}(3 \sin x-4 \cos x)
$$

Hence the general solution is: $\mathrm{CF}+\mathrm{PI}$

$$
y=(A+B x) e^{-x}+\frac{e^{x}}{25}(3 \sin x-4 \cos x)
$$

