Question

Suppose that X is uniformly distributed over the interval (0,1), i.e. the pdf of X is

$$
f(x)= \begin{cases}1, & \text { for } 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the pdf of $Y=-2 \log (X)$.
Answer
$y=-2 \log x \Rightarrow x=e^{-\frac{y}{2}}$
The transformation is decreasing.
The range of y is $0<y<\infty$.
$\frac{d x}{d y}=e^{-\frac{y}{2}}\left(\frac{1}{-2}\right)$
The pdf of Y is $g(y)=1\left|\frac{d x}{d y}\right|=\frac{1}{2} e^{-\frac{y}{2}}, \quad 0<y<\infty$.
The distribution is called the χ^{2} distribution with 2 degrees of freedom.

