Question

Suppose that X has a uniform distribution on the interval $(0,1)$. Show that the pdf of $Y=(8 X)^{\frac{1}{3}}$ is given by

$$
f(x)= \begin{cases}\frac{3}{8} y^{2}, & \text { for } 0<y<2 \\ 0, & \text { otherwise }\end{cases}
$$

Answer

The transformation is

$$
y=(8 x)^{\frac{1}{3}}=2 x^{\frac{1}{3}}
$$

Therefore the range of y is $0<y<2$.
Also $x=\frac{y^{3}}{8}$.
Therefore $\frac{d x}{d y}=\frac{1}{8} \cdot 3 \cdot y^{2}$.
Therefore the pdf of Y if

$$
\begin{aligned}
g(y) & =1 \cdot\left|\frac{3}{8} y^{2}\right|, \quad 0<y<2 \\
& =\frac{3}{8} y^{2}, \quad 0<y<2
\end{aligned}
$$

