
FUNCTIONAL ANALYSIS
HAHN-BANACH THEOREM

If M is a linear subspace of a normal linear space X and if F is a bounded
linear functional on M then F can be extended to M + [x0] without
changing its norm.

Proof We first suppose that X is a vector space over the real numbers.
We may suppose without loss of generality ‖F‖ = 1. We may define
F (x0) = α and F (m+ λx0) = F (m) + λα m ∈M .

We must have

|F (m) + λα| ≤ ‖m+ λx0‖

i.e. |F (m) + α| ≤ ‖m+ x0‖(m arbitrary ⇒ m
λ
arbitrary

If m1 m2 ∈M

F (m1) + α ≤ ‖m1 + x0‖
F (m2) + α ≥ −‖m2 + x0‖

−F (m2)− ‖m2 − x0‖ ≤ α ≤ −F (m1) + ‖m1 + x0‖ − (I)

F (m1)− F (m2) = F (m1 −m2) ≤ ‖m1 −m2‖
≤ ‖m1 + x0‖+ ‖m2 + x0‖

therefore ∃α satisfying (I).
Now if X = X(C)

F (x) = G(g) + iH(x)

iF (x) = F (ix) = iG(x)−H(x) therefore H(x) = −G(ix)

= G(ix) + iH(x) therefore

F (x) = G(x)− iG(ix)

and G can be extended by the first part.
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By Zorn’s lemma there will be a maximal subspace N to which M can
be extended and N = X, applying the theorem.

We can embed X in X∗∗ as follows:

Let x ∈ X and define f(λx) = λ‖x‖. Then ‖f‖ = 1.
f can be extended to the whole space without changing its norm.

|x̃(f)| = |f(x)| = ‖x‖
therefore ‖x̃‖ ≥ ‖x‖

Also |x(f)| = |f(x)| ≤ ‖f‖‖x‖ therefore ‖x‖ ≤ ‖x‖.

Adjoint of an operator Let T be a continuous linear transformation from
X → Y .

The adjoint T ∗ of T is a linear transformation from Y ∗ to X∗ defined
as follows:

Let f ∈ Y ∗.

We define T ∗(f) ∈ X∗ by (T ∗ f)x = f(TX)

‖T ∗(f)‖ = sup
‖x‖=1

|fT (x)|

≤ ‖f‖ sup
‖x‖=1

‖Tx‖

≤ ‖F‖‖T‖

Therefore T ∗ is continuous and ‖T ∗‖ ≤ ‖T‖.
Now T ∗∗ maps X∗∗ to Y ∗∗.

If X is regarded as a subspace of X∗∗ then T ∗∗ is an extension of T
therefore ‖T‖ ≤ ‖T ∗∗‖ ≤ ‖T ∗‖ therefore ‖T ∗‖ = ‖T‖.

Weak topology Let X be a normed vector space and let X∗ be the dual
of X. We define a topology on X, called the weak topology, by taking
the sets

V (x)f1...fnε = {y ∈ X : |fi(x)− fi(y)| < ε i = 1, . . . , n}

as a basis of neighbourhoods of the point x, where f1 . . . fn are any
functionals in X∗ and ε is any positive number.
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As all the f are continuous this set will be open in the original topology
and so this topology is weaker than the original one.

Example Let ξ = (xn) ∈ `2

Let f = (yn)

f(ξ) =
∑

xnyn = (ξ, η).

ξα → 0 in the weak topology ⇔ (|xiα, η)→ 0.

let ε1 = (1, 0, 0, . . .) ε2 = (0, 1, 0, . . .) etc.

‖εm − εn‖ =
√
2 m 6= n. But for the weak topology this sequence

converges to zero as εn η) = yn → 0 as
∑ |yn|2 <∞.

Example Consider the space of all real valued functions defined on [0 1].

Consider the topology given by fα → f ⇔ fα(x)→ f(x) for each x in
[0 1].

Basic neighbourhoods:

Given x1 . . . xn and ε > 0

N = {g : |f(xi)− g(xi)| < ε i = 1 . . . n

Let C be the subspace of continuous functions. Let d(x) =

{

1 x irrational
0 x rational

d ∈ C for this topology, for given x1 . . . xn we can find f ∈ C such that

f(xi) = d(xi) i = 1, . . . , n

and so f ∈ N(d).

But no sequence of continuous functions converges to d in this topology
for, given {fn} ∈ C and fn(x)→ d(x) at every x.

Let Hn = ∩r≥n{x : fr(x) ≥ 1
2
}. Hn is closed. Hn contains no rational

and so is nowhere dense, therefore ∪∞n=1Hn is of the first category. But
∪∞n=1Hn= irrationals - of second category.

Theorem Suppose X is a Banach space, than the unit sphere of X∗ is
compact in the weak ∗ topology.
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Proof For each x ∈ X define

Cx = {z : |z| ≤ ‖x‖}

cx is a compact set therefore C =
∏

xCx is compact.
∏

x∈X Cx = set of all functions mapping X to the complex plane with
the property that |F (x)| ≤ ‖x‖. Hence the unit sphere of X∗ can be
regarded as a subspace and so will be compact as it is closed.

Theorem If X is a Banach space, X is reflexive⇔ its unit sphere is weakly
compact.

Proof If X is reflexive X∗∗ = X the weak topology of the unit sphere of X
is the same as the weak ∗ topology which is compact by th previous
theorem.

Closed Graph Theorem T linear

½¼
¾»

½¼
¾»

-X Y

T

Let G(T ) = {(X,T (X)} ⊂ X × Y . If T is continuous G(T ) is closed.
The theorem states that the converse is true.

Lemma Let T be a bounded linear transformation of a Banach space X

into a Banach sphere Y . If the image under T of the unit sphere
S1 = S(0, 1) is dense in some sphere Ur = S(0, r) about the origin of
Y than it includes the whole of Ur.

Proof Let δ > 0. We wish to define a sequence {yn} such that

yn+1 − yn ∈ δnS, ‖yn+1 − y‖ < δn+1r (1)

We define y0 = 0. Suppose that y0 . . . yn have been defined.

Since y ∈ S(y, δn+1r) ∩ (yn + δnUr) this is a non-empty open subset
of yn + δnUr therefore there is an element yn+1 of yn + δnT (S1) which
belongs to this set, and yn+1 satisfies the conditions (1).
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yn → y as n→∞ provided δ < 1.

∃xn such that xn ∈ δnS1 and T (xn) = yn+1 − yn.

We can define x =
∑∞

1 xn provided δ < 1. Since T is bounded

T (X) = lim
N→∞

N
∑

1

T (xn)

= lim
N→∞

yN+1 = y

‖x‖ ≤ |sumδn =
1

1− δ
for allδ

therefore ‖x‖ ≤ 1

Ur(1−δ) ⊂ T (S1) for every δ

and Ur = ∪δUr(1−δ ⊂ T (S1)

Proof of Theorem Let N(x) = ‖x‖+ ‖T (x)‖
If {xn} is a Cauchy sequence for the norm N then it is a Cauchy
sequence for ‖X‖ and also {T (xn)} is a Cauchy sequence for ‖Tx‖.
Therefore xn → x and Txn → y as n → ∞ as G(T ) is closed (x, y) ∈
G(T ) therefore y = T (x).

N(x− xn) = ‖x− xn‖+ ‖Tx− Txn‖ → 0 as n→∞

Therefore X is a Banach space for the new norm N . Now the identity
mapping from X with norm N to (X, ‖ ‖) is bounded since ‖X‖ ≤
N(x).

If S1 denotes the unit sphere defined by N , it follows from Baire’s
category theorem that S1 is dense in some sphere Ur about the origin
defined by ‖ ‖.
Thus by the lemma applied to the identity mapping Ur ⊂ S1

i.e. if ‖X‖ < r ⇒ N(x) < 1

i.e. N(X) ≤ 1
r
‖x‖

so ‖T (x)‖ ≤ N(x) ≤ 1
r
‖x‖ and so T is continuous.

Hilbert Space A pre-Hilbert Space is a real or complex vector spade in
which an inner product (x, y) is defined having the following properties.

(i) (x, x) > 0 unless x = 0
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(ii) (x, y) = (y, x)

(iii) (x+ y, z) = (x, z) + (y, z)

(iv) λx, y) = λ(x, y)

A pre-Hilbert space can be normed by defining ‖x‖ = (x, x) 1
2 .

A Hilbert space is a pre-Hilbert space which is complete for this norm.

A Banach space is a Hilbert space

⇔ ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

Schwarz inequality |(x, y)| ≤ ‖x‖ ‖Y ‖

Proof

(λx− y, λx− y) = |λ|2‖x‖2 − 2Rλ(x, y) + ‖y‖2

2Rλ(x, y) ≤ |λ|2‖x‖2 + ‖y‖2

Choose λ so that |λ| = ‖Y ‖
‖X‖

and argλ = −arg(x, y).

2
‖Y ‖
‖X‖|(x, y)| ≤ 2‖y‖

2

Hence the result.

Minkowski Inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Proof

|‖x+ y‖2| = |(x+ y, x+ y)|
= |‖X‖2 + 2R(x, y) + ‖y‖2|
≤ ‖x‖2 + ‖Y ‖2 + 2|(x, y)| ≤ (‖x‖+ ‖Y ‖)2

using Schwarz.

Theorem A closed convex subset C of a Hilbert space contains a unique
element of smallest norm.

Proof Let d = inf{‖x‖ : x ∈ C}.
Then ∃{xn} ⊂ C such that ‖xn‖ → d. Since C is convex xn+xm

2
∈ C

therefore ‖xn + xm‖ ≥ 2d.
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‖xn − xm‖2 = 2‖xn‖2 + 2‖xm‖2 − ‖xn + xm‖2

≤ 2{‖xn‖2 − d2}+ 2{‖xm‖ − d2} < ε

if n and m are sufficiently large.

Hence the sequence is a Cauchy sequence and has a limit point x which
belongs to C as C is closed, and ‖x‖ = d.

If y ∈ C and ‖y‖ = d then ‖x + y‖ ≥ 2d = ‖x‖ + ‖y‖ and so y = λx

where λ > 0⇒ ‖y‖ = λ‖x‖ ⇒ λ = 1 therefore x = y.

Theorem Let M be a closed subspace of a Hilbert space H. Then any
x = x1+x2 where x1 ∈M and x2 perpendicular M (i.e. (x2, y) = 0 for
all y ∈M).

Proof Suppose x ∈M . Let x2 be the element in the closed convex set x+M

which is closest to 0.

Put x1 = x− x2 ∈M .

If y ∈M then for any scalor λ

‖x2 + λy‖2 ≥ ‖x2‖2

Since 2Rλ(x2, y) + |λ|2‖y‖2 ≥ 0
Put λ = − (x2 y)

‖y‖2
.

Then − |(x2 y)|2

‖y‖2
≥ 0 therefore (x2 y) = 0.

Suppose x = x′1 + x′2 = x1 + x2 therefore x1 − x′1 = x′2 − x2 = 0.

Hence uniqueness.

If M is closed H =M +M⊥

If M is closed and x ∈M⊥⊥

x = x1 + x2 x1 ∈M x2 ∈M⊥

(x x2) = (x1 x2) + (x2 x2)

Therefore (x2 x2) = 0 therefore x2 = 0 therefore x ∈M .

Theorem Suppose H is any Hilbert Space and let f ∈ X∗. Then there is
an element y ∈ H such that f(x) = (x, y) for every x ∈ H.
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Proof Let M= null space of f .

∃y0⊥M such that if x ∈ H

x = m+ λy0 m ∈M

f(x) = λf(y0)

(x, y0) = λ‖y0‖2

f(x) =
(x, y0)

‖y0‖2
f(y0) =

(

x,
f(y0)

‖y0‖2
y0

)

Write y = f(y0)
‖y0‖2

y0.

If M is any closed subspace and x ∈ H

x = x1 + x2 x1 ∈M x2 ∈M⊥

x1 = ProjMx

If T (x) = x1 T is a linear operator from H to itself, and ‖T‖ = 1.

TT ′ = T

(Tx, y) = (x1 y) = (x1 y1)

(x, Ty) = (x y1) = (x1 y1)

Therefore T is self-adjoint.

Theorem If M1, . . . ,Mn are n mutually perpendicular closed subspaces of
a Hilbert space H and if x ∈ H and xi, . . . , xn are the projections of x
on M1, . . .Mn respectively, then

∑

‖xi‖2leq‖x‖2

Proof Put M = M1 + +Mn x = x1 + . . . + xn + y, y ∈ M⊥, then ‖x‖2 =
∑ ‖x1‖2 + ‖y‖2.

Theorem Let {Mα} be a family, possibly uncountable, of pairwise orthog-
onal closed subspaces of H, and let M be the closure of their direct
sum.
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If xα = projMα
x x ∈ H then xα = 0 except for a countable set of indices

αn.
∑

xαn is convergent and its sum is the projection of x on M .

Proof
r
∑

i=1

‖xβi‖ ≤ ‖x‖2

Hence for any n the number of indices satisfying ‖xα‖ ≥ 1
n
is finite

therefore the number of indices satisfying ‖xα‖ > 0 is countable.

N
∑

1

‖xαn‖2 ≤ ‖x‖2 for each N therefore
∞
∑

1

‖xαn‖2 < +∞.

If yn =
N
∑

1

xαn

‖yn − ym‖2 ≤
n
∑

m+1

‖xαi‖2 < ε

if m is sufficiently large. Therefore {yn} is a Cauchy sequence which
tends to a limit y =

∞
∑

1

xαn in M , as M is closed.

It remains to prove that x− y⊥M .

It is sufficient to prove that

wβ1
+ wβ2

+ . . .+ wβr⊥x− y

where wβi ∈Mβ1
as the class of all such vectors is everywhere dense in

M .

If β1 as an αn

(x− y, wβ1
) = (x wβ1

)− (xβ1
wβ1
)

= (xβ1
wβ1
)− (xβ1

wβ1
) = 0

If β1 is not an αn then wβ1
⊥x and ⊥y and so to x− y.

Orthonormal vectors A set N of vectors in a Hilbert space H is said to
be orthonormal if ‖x‖ = 1 for every x in N , and (x, y) = 0 for all y in
N 6= x.
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An orthonormal set N of vectors is conplete if N⊥ = {0}.
Let Mx be the 1-dimensional subspace generated by x in N .

If y ∈ H

projMx
y =

(y x)

‖x‖ .x = (y, x).x

as ‖x‖ = 1 (y, x) = 0 except for a sequence {xn}|subsetN and for this
sequence

y =
∑

(y xn)xn

‖y‖2 =
∑

|(y xn)|2

This condition of completeness is equivalent to:

(i) for any y in H y =
∑

x∈N

(y x)x

(ii) for any y in H ‖y‖2 = z
∑

x∈N

|(y x)|2.
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