FUNCTIONAL ANALYSIS
HAHN-BANACH THEOREM

If M is a linear subspace of a normal linear space X and if F' is a bounded
linear functional on M then F can be extended to M + [z¢] without
changing its norm.

Proof We first suppose that X is a vector space over the real numbers.
We may suppose without loss of generality ||F|| = 1. We may define
F(z9) = aand F(m+ A\xg) = F(m) + Aa m € M.

We must have

[F'(m) + Aa| < [lm + Az

ie. [F(m)+al <||m+ xo/(m arbitrary = 7§ arbitrary

If my me € M

F(m1)+a S ||m1+1’0||
F(m2)+a Z —||m2+x0||
—F(mgy) — |ma — ol < a < —=F(my)+ |[my+xol — (1)

F(my) — F(mgy) = F(my—mag) < ||my —ma|
[y + 20| + [|ma + 0|

IN

therefore Ja satisfying (I).
Now if X = X(C)

Flx) = Glg)+iH(x)

iF(x) = F(ix)= zG(w) H(z) therefore H(x) = —G(iz)
= G(iz) +iH(z) therefore

F(z) = G(z) —iG(ir)

and G can be extended by the first part.
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By Zorn’s lemma there will be a maximal subspace N to which M can
be extended and N = X, applying the theorem.

We can embed X in X™* as follows:

Let z € X and define f(Azx) = A||z||. Then || f]| = 1.

f can be extended to the whole space without changing its norm.

[Z(N] = 1f(@)] =[]

therefore ||Z|| > ||z]|

Also [z(f)] = [f ()] < [|f[I[]] therefore [|Z]| < |[z[].
Adjoint of an operator Let T be a continuous linear transformation from
X =Y.

The adjoint 7™ of T is a linear transformation from Y* to X* defined
as follows:

Let fe Y™
We define T*(f) € X* by (T'* f)z = f(T'X)

=Nl = IISlulgllfT(x)l
< |/l HSIIJIlglllTIII
< |FIT]

Therefore T is continuous and ||7™|| < ||T°].
Now T™* maps X** to Y**.

If X is regarded as a subspace of X** then T™* is an extension of T
therefore ||T']| < |T**|| < ||T*|| therefore ||T*|| = ||T||.

Weak topology Let X be a normed vector space and let X* be the dual
of X. We define a topology on X, called the weak topology, by taking
the sets

V(x>f1---fn6 = {y € X: |fz(x) - fz(y>| <eir=1,... ’n}

as a basis of neighbourhoods of the point x, where f;... f, are any
functionals in X* and ¢ is any positive number.
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As all the f are continuous this set will be open in the original topology
and so this topology is weaker than the original one.

Example Let ¢ = (,,) € 2
Let f = (yn)

FE) =" wnyn = (&,m).

£, — 0 in the weak topology < (|zia,n) — 0.
let 1 = (1,0,0,...) e2 =(0,1,0,...) etc.
lem — €nll = V2 m # n. But for the weak topology this sequence
converges to zero as €, ) =y, — 0 as 3 |y, |> < oo.
Example Consider the space of all real valued functions defined on [0 1].

Consider the topology given by f, — f < fo.(z) — f(z) for each z in
[0 1].

Basic neighbourhoods:

Given z;...x, and € > 0

N={g:|f(x;) —g(x;)] <ei=1...n

1 =z irrational

Let C be the subspace of continuous functions. Let d(z) = { 0 1 rational

d € C for this topology, for given x; ...z, we can find f € C such that

flz)=d(x;))i=1,...,n

and so f € N(d).
But no sequence of continuous functions converges to d in this topology

for, given {f,} € C and f,(z) — d(x) at every x.

Let H, = Nysp{z @ fr(z) > %} H,, is closed. H,, contains no rational
and so is nowhere dense, therefore U | H,, is of the first category. But
Up® , H,,= irrationals - of second category.

Theorem Suppose X is a Banach space, than the unit sphere of X* is
compact in the weak * topology.



Proof For each x € X define

Co = {21 |2[ < |l=[l}

¢, is a compact set therefore C' =[], C,. is compact.

[[.ex C. = set of all functions mapping X to the complex plane with
the property that |F(z)| < ||z||. Hence the unit sphere of X* can be
regarded as a subspace and so will be compact as it is closed.

Theorem If X is a Banach space, X is reflexive < its unit sphere is weakly
compact.

Proof If X is reflexive X** = X the weak topology of the unit sphere of X
is the same as the weak * topology which is compact by th previous
theorem.

Closed Graph Theorem 7T linear

)

Let G(T) = {(X,T(X)} C X x Y. If T is continuous G(T) is closed.
The theorem states that the converse is true.

Lemma Let T be a bounded linear transformation of a Banach space X
into a Banach sphere Y. If the image under T of the unit sphere
S1 = 5(0,1) is dense in some sphere U, = S(0,7) about the origin of
Y than it includes the whole of U,.

Proof Let 0 > 0. We wish to define a sequence {y,} such that

Yn+1 — Un € 5nSa Hyn+1 - y” < 5n+17, (1)

We define yo = 0. Suppose that yq ...y, have been defined.

Since ¥ € S(y,8" ) N (y, + 6"U,.) this is a non-empty open subset
of y, + 0"U, therefore there is an element y,1 of y, + d"1T'(S) which
belongs to this set, and ¥, satisfies the conditions (1).
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Yn — Y as n — oo provided § < 1.
dz,, such that x,, € §"S; and T'(x,) = Ynt1 — Yn-
We can define T = >-7° z,, provided 6 < 1. Since T is bounded

T(X) = lim ;T(xn)

N—oo

ngrgo YN+1 =7
1

IZ|| < [|sumd™ = s for ally
therefore ||Z]] < 1
Ura—sy C T(Sy) for every §
and U, = U(;Ur(l,(; C T(Sl)

Proof of Theorem Let N(z) = ||z| + ||T(z)||

If {z,} is a Cauchy sequence for the norm N then it is a Cauchy
sequence for ||X|| and also {T'(x,)} is a Cauchy sequence for |||

Therefore x,, — = and Tx, — y as n — oo as G(T) is closed (z,y) €
G(T) therefore y = T'(x).

Nz —z,) = ||z — x| + ||Tx — Tx,|| — 0 as n — o0

Therefore X is a Banach space for the new norm N. Now the identity
mapping from X with norm N to (X, ||) is bounded since || X| <
N(x).

If S; denotes the unit sphere defined by N, it follows from Baire’s
category theorem that S; is dense in some sphere U, about the origin
defined by || ||.

Thus by the lemma applied to the identity mapping U, C S,
Le. if | X|| <r= N(z) <1
e, N(X) < !z

so ||T'(z)|| < N(z) < L[|z and so T is continuous.

Hilbert Space A pre-Hilbert Space is a real or complex vector spade in

which an inner product (z,y) is defined having the following properties.

(i) (z,z) >0 unless x =0



(ii) (z,y) = (y,7)

(iii) (¢ +y,2) = (z,2) + (v, 2)

(iv) Az,y) = A(z,y)

A pre-Hilbert space can be normed by defining ||z| = (z,z)z.

A Hilbert space is a pre-Hilbert space which is complete for this norm.

A Banach space is a Hilbert space

& o +yl* + llz = yl* = 2l|=[* + 2[|y||*
Schwarz inequality |(z,y)| < ||lz| ||Y]|
Proof

Az —y Az —y) = [A|lz]|* — 2RA(z,9) + [ly*
2RA(z,y) < [AP)® + [yl

Choose A so that |A| = H and arg\ = —arg(z,y).

4l 2
2051 (@ )| < 2|y
1X1]

Hence the result.
Minkowski Inequality ||z + y| < ||z|| + ||y||
Proof
Nz +yl?l = (z+y,z+y)

= [IX1* + 2R(z,y) + Iyl
< a2l + 1Y+ 20, )l < (2l + 1Y)

using Schwarz.

Theorem A closed convex subset C' of a Hilbert space contains a unique
element of smallest norm.
Proof Let d = inf{||z| : z € C}.

Then 3{z,} C C such that ||z,|| — d. Since C is convex ntim ¢ C
therefore ||z, + x| > 2d.



lzn = 2mll* = 2]l + 2lznll* — 20 + 2l
< 2lzall® = d*} + 2{|lwmll - &'} <&

if n and m are sufficiently large.

Hence the sequence is a Cauchy sequence and has a limit point x which
belongs to C as C' is closed, and ||z| = d.

If y € C and ||y|| = d then ||z + y|| > 2d = ||z|| + |ly|] and so y = Az
where A > 0 = ||y|| = A||z|| = A =1 therefore z = y.

Theorem Let M be a closed subspace of a Hilbert space H. Then any
x = x1+ x9 where 21 € M and x5 perpendicular M (i.e. (x2,y) = 0 for
all y € M).

Proof Suppose x € M. Let x5 be the element in the closed convex set x+ M
which is closest to 0.
Put zi =2 — 29 € M.
If y € M then for any scalor A

w2 + Ay[l* = =

Since 2R\ (xo,y) + [M?[ly||*? > 0
Put A = —(&29

Iyl

Then —% > 0 therefore (x5 y) = 0.

Suppose x = x| + 2}, = x1 + 5 therefore x; — 2} = 2}, — 29 = 0.
Hence uniqueness.

If M is closed H = M + M+

If M is closed and x € M++

r = I+ T2 l’leMIQGMJ_

(x x9) = (21 x2) + (2 2)

Therefore (23 x5) = 0 therefore x5 = 0 therefore x € M.

Theorem Suppose H is any Hilbert Space and let f € X*. Then there is
an element y € H such that f(z) = (x,y) for every z € H.
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Proof Let M= null space of f.
Jyo LM such that if z € H

r = m4+AXyyméeM
) = Af(w)

(z, o) = Allwol®
)

_ (.%, yO)
= PE f (o)

(o)

Write y = @gﬁ% Yo.

If M is any closed subspace and = € H

T = T4+ x990 €M aeE Mt

r1 = Projyz

If T'(z) = 1 T is a linear operator from H to itself, and ||T']| = 1.

T = T
(Tx,y) = (z1 y) = (x1 11)
(x,Ty) = (v y)= (1)

Therefore T is self-adjoint.

Theorem If M,..., M, are n mutually perpendicular closed subspaces of
a Hilbert space ‘H and if x € H and x,, ..., z, are the projections of x
on My, ... M, respectively, then

> il Pl

Proof Put M = M, + +M,, x =z, + ... + x, +y, y € M+, then ||z]*> =
2l + [yl

Theorem Let {M,} be a family, possibly uncountable, of pairwise orthog-
onal closed subspaces of H, and let M be the closure of their direct
sum.



If x, = projy, x x € H then x, = 0 except for a countable set of indices
Q.

Y. X, 1s convergent and its sum is the projection of x on M.

Proof .
sl < z)?
i=1

Hence for any n the number of indices satisfying ||z,| > + is finite
therefore the number of indices satisfying ||z,|| > 0 is countable.

N 00
> |[#a, ||* < ||z]|* for each N therefore »  ||za, ||* < +o0.
1 1

N
Ify, = Z T,
1

n
Hyn - ym||2 < Z Hxaz ‘<e

m+1

if m is sufficiently large. Therefore {y,} is a Cauchy sequence which

tends to a limit y = Z Zo, i M, as M is closed.
1

It remains to prove that z — y L M.

It is sufficient to prove that

wg, +wg, + ... +wg Lxr—y

where wg, € Mg, as the class of all such vectors is everywhere dense in
M.

If 8; as an «,

(.I o y’wﬁl) = (‘7: wﬁl) - (mﬂl wﬁl)
- (’rﬁl wﬁ1) - ('Tﬁl wﬁ1) =0

If 5, is not an «,, then wg, Lz and Ly and so to z — v.

Orthonormal vectors A set N of vectors in a Hilbert space H is said to
be orthonormal if ||z|| = 1 for every = in N, and (z,y) = 0 for all y in
N = z.



An orthonormal set N of vectors is conplete if N+ = {0}.

Let M, be the 1-dimensional subspace generated by x in N.
Ifye™H

. yzx
Projy,y = WD) o (y,2)a
]
as ||z|| =1 (y,x) = 0 except for a sequence {x,}|subsetN and for this

sequence

y = Z(y T )Ty,
lyll* = > Iy za)l®

This condition of completeness is equivalent to:

(i) foranyyin Hy= > (y z)z

zeN

(i) for any y in H [lyl|* == >_ |(y 2)[*.

zeN
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