FUNCTIONAL ANALYSIS
METRIC SPACES

A metric space is a space in which is defined a distance function p with the
following properties:

1. p(x,y) > 0 with equality < = = y.
2. p(z,y) = p(y, ).
3. p(z,y) < plx, 2) +py, 2).

A sequence {z,} is a cauchy sequence if, given ¢ > 03N such that
p(Tn, Tm) < € whenever n,m > N.

Definition A complete metric space is a metric space in which every Cauchy
sequence converges.

Contraction Mapping Theorem Let X be a complete metric space and
T a continuous mapping of X into X such that p(T'z, Ty) < 0(p(x,y))
where 0 < 6 < 1. Then T has a unique fixed point.

Proof Let x be an arbitrary point in X. Let g = z, 1 = T(x), 23 =
T(T(x))....

The sequence {z,} is a cauchy sequence for p(z)n + 1, x,) < 6"p(zo, x1)
and so

P(Trg1, Tn) + ... "’p(anrpa anrp*l)

p(anrp? xn) <
< (OO ()

and therefore the coefficient of p(zg, ;) can be made arbitrarily small
provided only that n is large.

Therefore there is a point £ € X such that z,, — £ asn — oo zox122... —
€.

Therefore TxgTxy... — TE by continuity of T ie. zyxy... — TE
therefore T¢ = €.

Suppose n =1Tn, £ =TE.

p(&,n) = p(T€Tn) < Op(§,n) 6 < Ltherefore p(§,n) = 0 therefore § = 1.
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prove that there is a unique function z(t) defined and continuous for
0 <t <1 which is a solution of this equation.

Definition A set H is nowhere dense if (H)? = (.

Baire’s Theorem Let X be a complete metric space and {H,} a sequence
of subsets of X such that UH,, = X. Then it is impossible for every
one of the H,, to be nowhere dense.

Proof Suppose the H, are all nowhere dense. Then the complement of H,
contains some non-empty sphere S; where r(S;) < 1. Since S; is not
contained in H, we can find a non-empty closed sphere S, contained
in the complement of H, and in 5.

We may suppose 7(52) < 3.

Proceeding in this way we can find a sequence of non-empty closed
spheres 51 D Sy D ... with H,, NS, =0 and 7(S,) < +.

For each n suppose z,, € S,,. Then {z,} is a Cauchy sequence therefore
x, — x as n — oo therefore x € N7 .S, therefore x € U2, H,, which
is a contradiction.

Baire’s theorem is also true for locally compact spaces.

Definition A set of the first category is a set which is the join of an enu-
merable number of nowhere dense sets.
A set of second category is one which is not of the first category.

Example The rational numbers cannot be expressed as an intersection of
open sets.

Proof The real line is a complete metric space and so by Baire’s Theorem
is of the second category. The rationals, being a countable set, are a
set of the first category. Suppose that N2, G; = Q (the rationals).

Then FY is closed and UG, =V — Q.
)G5)0 = (G)° = 0, for otherwise G would contain an interval, and so

would contain points of Q. But this tells us that R — Q is of the first
category which is a contradiction.

Example The set of continuous functions which are differentiable at even
one point is a set of the fist category.



Proof Let f be defined and continuous on [0 1]. Define p(f, g) = sup,¢jo 1{[f(z)—
g(z)|}. Then this is a complete metric space, denoted by LP[0 1].

Consider the set of functions which are differentiable at 0 say, i.e.

M — limit as n — oo.

Define H,, , = {f : ‘M‘ < n whenever x < %}

x
Each H,,, is closed and is nowhere dense, and U,, ,H,,, contains the
set of all functions differentiable at the origin. Hence the set of functions
differentiable at the origin is in the first category.

The argument can be extended as follows. Let Ujus... be an enu-
merable basis for the open sets e.g. the rational spheres with rational
centres, and define

f@) = f(y)

Hm’n:{f:‘ T —y

< n whenever z,y € Um}

Zorn’s Lemma (A form of the axioms of choice) Any partially ordered
set in which every simply ordered subset has a maximum element, has
a maximum element.

A Hamel basis for the real numbers is a set B such that

(a) Any subset of B is rationally independent.
(b) Any real number is a t.c. of a finite number of the B.

Consider all subsets Y of R; with the property that y,...y, € Y =
ry1+ ...+ 71y, # 0 unless ry = ... =r, =0, r rational.

We order the sets Y by inclusion.
Let {Y,} be a simply ordered class of these sets.

It Y = U, then Y has the required independence property, for if y,, €
Y (i=1,....,n)theny,, € V;i=1,...,n and Imax;_,__, Y; for {Y,}
is simply ordered so the y,, are rationally independent.

Hence y is a maximum element, therefore by Zorn’s Lemma 3 a set B
which is a maximal element.

Suppose r cannot be expressed as a r.c. of elements in B. Then we
add x to B to get a greater set with the same independence property
therefore as B is maximal it follows that every real x can be expressed
as a r.c. of elements in B.

The same method of proof also shows the existence of a basis for any
vector space whatsoever.



